skip to content
Multilinear subspace learning : dimensionality reduction of multidimensional data Preview this item
ClosePreview this item
Checking...

Multilinear subspace learning : dimensionality reduction of multidimensional data

Author: Haiping Lu; Konstantinos N Plataniotis; A N Venetsanopoulos
Publisher: Boca Raton, Florida : CRC Press/Taylor & Francis Group, [2014]
Series: Chapman & Hall/CRC machine learning & pattern recognition series.
Edition/Format:   Print book : EnglishView all editions and formats
Summary:
"Due to advances in sensor, storage, and networking technologies, data is being generated on a daily basis at an ever-increasing pace in a wide range of applications, including cloud computing, mobile Internet, and medical imaging. This large multidimensional data requires more efficient dimensionality reduction schemes than the traditional techniques. Addressing this need, multilinear subspace learning (MSL)  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Document Type: Book
All Authors / Contributors: Haiping Lu; Konstantinos N Plataniotis; A N Venetsanopoulos
ISBN: 9781439857243 1439857245
OCLC Number: 659750493
Notes: "A Chapman & Hall Book."
Description: xxvii, 268 pages : illustrations ; 25 cm.
Contents: 1. Fundamentals and foundations --
2. Algorithms and applications.
Series Title: Chapman & Hall/CRC machine learning & pattern recognition series.
Responsibility: Haiping Lu, Konstantinos N. Plataniotis, Anastasios N. Venetsanopoulos.
More information:

Abstract:

"Due to advances in sensor, storage, and networking technologies, data is being generated on a daily basis at an ever-increasing pace in a wide range of applications, including cloud computing, mobile Internet, and medical imaging. This large multidimensional data requires more efficient dimensionality reduction schemes than the traditional techniques. Addressing this need, multilinear subspace learning (MSL) reduces the dimensionality of big data directly from its natural multidimensional representation, a tensor. Multilinear Subspace Learning: Dimensionality Reduction of Multidimensional Data gives a comprehensive introduction to both theoretical and practical aspects of MSL for the dimensionality reduction of multidimensional data based on tensors. It covers the fundamentals, algorithms, and applications of MSL. Emphasizing essential concepts and system-level perspectives, the authors provide a foundation for solving many of today's most interesting and challenging problems in big multidimensional data processing. They trace the history of MSL, detail recent advances, and explore future developments and emerging applications. The book follows a unifying MSL framework formulation to systematically derive representative MSL algorithms. It describes various applications of the algorithms, along with their pseudocode. Implementation tips help practitioners in further development, evaluation, and application. The book also provides researchers with useful theoretical information on big multidimensional data in machine learning and pattern recognition. MATLAB source code, data, and other materials are available at www.comp.hkbu.edu.hk/haiping/MSL.html"--

Reviews

Editorial reviews

Publisher Synopsis

"...this book is built to be read as a rich and yet accessible introduction... artfully structured for a specialized audience of new researchers and bleeding-edge practitioners. ...The treatment Read more...

 
User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/659750493> # Multilinear subspace learning : dimensionality reduction of multidimensional data
    a schema:CreativeWork, schema:Book ;
   library:oclcnum "659750493" ;
   library:placeOfPublication <http://id.loc.gov/vocabulary/countries/flu> ;
   schema:about <http://experiment.worldcat.org/entity/work/data/1788230215#Topic/algorithmus> ; # Algorithmus
   schema:about <http://id.worldcat.org/fast/1028903> ; # Multilinear algebra
   schema:about <http://dewey.info/class/005.7/e23/> ;
   schema:about <http://experiment.worldcat.org/entity/work/data/1788230215#Topic/computers_machine_theory> ; # COMPUTERS--Machine Theory
   schema:about <http://experiment.worldcat.org/entity/work/data/1788230215#Topic/maschinelles_lernen> ; # Maschinelles Lernen
   schema:about <http://experiment.worldcat.org/entity/work/data/1788230215#Topic/multivariate_analyse> ; # Multivariate Analyse
   schema:about <http://experiment.worldcat.org/entity/work/data/1788230215#Topic/mustererkennung> ; # Mustererkennung
   schema:about <http://id.worldcat.org/fast/887919> ; # Data compression (Computer science)
   schema:about <http://experiment.worldcat.org/entity/work/data/1788230215#Topic/dimensionsreduktion> ; # Dimensionsreduktion
   schema:about <http://experiment.worldcat.org/entity/work/data/1788230215#Topic/computers_database_management_data_mining> ; # COMPUTERS--Database Management--Data Mining
   schema:about <http://experiment.worldcat.org/entity/work/data/1788230215#Topic/multilineare_algebra> ; # Multilineare Algebra
   schema:about <http://id.worldcat.org/fast/1892965> ; # Big data
   schema:about <http://experiment.worldcat.org/entity/work/data/1788230215#Topic/technology_&_engineering_electrical> ; # TECHNOLOGY & ENGINEERING--Electrical
   schema:author <http://viaf.org/viaf/5019591> ; # Anastasios N. Venetsanopoulos
   schema:author <http://viaf.org/viaf/305442956> ; # Haiping Lu
   schema:author <http://viaf.org/viaf/19900544> ; # Konstantinos N. Plataniotis
   schema:bookFormat bgn:PrintBook ;
   schema:datePublished "2014" ;
   schema:description "1. Fundamentals and foundations -- 2. Algorithms and applications."@en ;
   schema:description ""Due to advances in sensor, storage, and networking technologies, data is being generated on a daily basis at an ever-increasing pace in a wide range of applications, including cloud computing, mobile Internet, and medical imaging. This large multidimensional data requires more efficient dimensionality reduction schemes than the traditional techniques. Addressing this need, multilinear subspace learning (MSL) reduces the dimensionality of big data directly from its natural multidimensional representation, a tensor. Multilinear Subspace Learning: Dimensionality Reduction of Multidimensional Data gives a comprehensive introduction to both theoretical and practical aspects of MSL for the dimensionality reduction of multidimensional data based on tensors. It covers the fundamentals, algorithms, and applications of MSL. Emphasizing essential concepts and system-level perspectives, the authors provide a foundation for solving many of today's most interesting and challenging problems in big multidimensional data processing. They trace the history of MSL, detail recent advances, and explore future developments and emerging applications. The book follows a unifying MSL framework formulation to systematically derive representative MSL algorithms. It describes various applications of the algorithms, along with their pseudocode. Implementation tips help practitioners in further development, evaluation, and application. The book also provides researchers with useful theoretical information on big multidimensional data in machine learning and pattern recognition. MATLAB source code, data, and other materials are available at www.comp.hkbu.edu.hk/haiping/MSL.html"--"@en ;
   schema:exampleOfWork <http://worldcat.org/entity/work/id/1788230215> ;
   schema:image <http://images.tandf.co.uk/common/jackets/websmall/978143985/9781439857243.jpg> ;
   schema:inLanguage "en" ;
   schema:isPartOf <http://experiment.worldcat.org/entity/work/data/1788230215#Series/chapman_&_hall_crc_machine_learning_&_pattern_recognition_series> ; # Chapman & Hall/CRC machine learning & pattern recognition series.
   schema:name "Multilinear subspace learning : dimensionality reduction of multidimensional data"@en ;
   schema:productID "659750493" ;
   schema:workExample <http://worldcat.org/isbn/9781439857243> ;
   umbel:isLike <http://bnb.data.bl.uk/id/resource/GBB247400> ;
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/659750493> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/1788230215#Series/chapman_&_hall_crc_machine_learning_&_pattern_recognition_series> # Chapman & Hall/CRC machine learning & pattern recognition series.
    a bgn:PublicationSeries ;
   schema:hasPart <http://www.worldcat.org/oclc/659750493> ; # Multilinear subspace learning : dimensionality reduction of multidimensional data
   schema:name "Chapman & Hall/CRC machine learning & pattern recognition series." ;
   schema:name "Chapman & Hall/CRC machine learning & pattern recognition series" ;
    .

<http://experiment.worldcat.org/entity/work/data/1788230215#Topic/computers_database_management_data_mining> # COMPUTERS--Database Management--Data Mining
    a schema:Intangible ;
   schema:name "COMPUTERS--Database Management--Data Mining"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/1788230215#Topic/computers_machine_theory> # COMPUTERS--Machine Theory
    a schema:Intangible ;
   schema:name "COMPUTERS--Machine Theory"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/1788230215#Topic/dimensionsreduktion> # Dimensionsreduktion
    a schema:Intangible ;
   schema:name "Dimensionsreduktion"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/1788230215#Topic/maschinelles_lernen> # Maschinelles Lernen
    a schema:Intangible ;
   schema:name "Maschinelles Lernen"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/1788230215#Topic/multilineare_algebra> # Multilineare Algebra
    a schema:Intangible ;
   schema:name "Multilineare Algebra"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/1788230215#Topic/multivariate_analyse> # Multivariate Analyse
    a schema:Intangible ;
   schema:name "Multivariate Analyse"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/1788230215#Topic/technology_&_engineering_electrical> # TECHNOLOGY & ENGINEERING--Electrical
    a schema:Intangible ;
   schema:name "TECHNOLOGY & ENGINEERING--Electrical"@en ;
    .

<http://id.worldcat.org/fast/1028903> # Multilinear algebra
    a schema:Intangible ;
   schema:name "Multilinear algebra"@en ;
    .

<http://id.worldcat.org/fast/1892965> # Big data
    a schema:Intangible ;
   schema:name "Big data"@en ;
    .

<http://id.worldcat.org/fast/887919> # Data compression (Computer science)
    a schema:Intangible ;
   schema:name "Data compression (Computer science)"@en ;
    .

<http://viaf.org/viaf/19900544> # Konstantinos N. Plataniotis
    a schema:Person ;
   schema:familyName "Plataniotis" ;
   schema:givenName "Konstantinos N." ;
   schema:name "Konstantinos N. Plataniotis" ;
    .

<http://viaf.org/viaf/305442956> # Haiping Lu
    a schema:Person ;
   schema:familyName "Lu" ;
   schema:givenName "Haiping" ;
   schema:name "Haiping Lu" ;
    .

<http://viaf.org/viaf/5019591> # Anastasios N. Venetsanopoulos
    a schema:Person ;
   schema:birthDate "1941" ;
   schema:familyName "Venetsanopoulos" ;
   schema:givenName "Anastasios N." ;
   schema:givenName "A. N." ;
   schema:name "Anastasios N. Venetsanopoulos" ;
    .

<http://worldcat.org/isbn/9781439857243>
    a schema:ProductModel ;
   schema:isbn "1439857245" ;
   schema:isbn "9781439857243" ;
    .

<http://www.worldcat.org/title/-/oclc/659750493>
    a genont:InformationResource, genont:ContentTypeGenericResource ;
   schema:about <http://www.worldcat.org/oclc/659750493> ; # Multilinear subspace learning : dimensionality reduction of multidimensional data
   schema:dateModified "2017-12-22" ;
   void:inDataset <http://purl.oclc.org/dataset/WorldCat> ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.