skip to content
Multiple-point geostatistics : stochastic modeling with training images Preview this item
ClosePreview this item
Checking...

Multiple-point geostatistics : stochastic modeling with training images

Author: Gregoire Mariethoz; Jef Caers
Publisher: Chichester, West Sussex ; Hoboken, NJ : Wiley Blackwell, 2015.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Summary:
"This book provides a comprehensive introduction to multiple-point geostatistics, where spatial continuity is described using training images. Multiple-point geostatistics aims at bridging the gap between physical modelling/realism and spatio-temporal stochastic modelling. The book provides an overview of this new field in three parts. Part I presents a conceptual comparison between traditional random function
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Print version:
Mariethoz, Gregoire.
Multiple-point geostatistics.
Chichester, West Sussex ; Hoboken, NJ : John Wiley & Sons Inc., 2015
(DLC) 2014035660
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Gregoire Mariethoz; Jef Caers
ISBN: 9781118662946 1118662946 9781118662939 1118662938
OCLC Number: 890377887
Notes: Includes index.
Description: 1 online resource
Contents: Multiple-point geostatistics; Contents; Preface; Acknowledgments; Part I Concepts; 1 Hiking in the Sierra Nevada; 1.1 An imaginary outdoor adventure company: Buena Sierra; 1.2 What lies ahead; 2 Spatial estimation based on random function theory; 2.1 Assumptions of stationarity; 2.2 Assumption of stationarity in spatial problems; 2.3 The kriging solution; 2.3.1 Unbiasedness condition; 2.3.2 Minimizing squared loss; 2.4 Estimating covariances; 2.5 Semivariogram modeling; 2.6 Using a limited neighborhood; 2.7 Universal kriging; 2.8 Semivariogram modeling for universal kriging. 2.9 Simple trend example case2.10 Nonstationary covariances; 2.11 Assessment; References; 3 Universal kriging with training images; 3.1 Choosing for random function theory or not?; 3.2 Formulation of universal kriging with training images; 3.2.1 Zero error-sum condition; 3.2.2 Minimum sum of square error condition; 3.3 Positive definiteness of the sop matrix; 3.4 Simple kriging with training images; 3.5 Creating a map of estimates; 3.6 Effect of the size of the training image; 3.7 Effect of the nature of the training image; 3.8 Training images for nonstationary modeling. 3.9 Spatial estimation with nonstationary training images3.10 Summary of methodological differences; References; 4 Stochastic simulations based on random function theory; 4.1 The goal of stochastic simulations; 4.2 Stochastic simulation: Gaussian theory; 4.3 The sequential Gaussian simulation algorithm; 4.4 Properties of multi-Gaussian realizations; 4.5 Beyond Gaussian or beyond covariance?; References; 5 Stochastic simulation without random function theory; 5.1 Direct sampling; 5.1.1 Relying on information theory; 5.1.2 Application of direct sampling to Walker Lake. 5.2 The extended normal equation5.2.1 Formulation; 5.2.2 The RAM solution; 5.2.3 Single normal equations simulation for Walker Lake; 5.2.4 The problem of conditioning; 5.3 Simulation by texture synthesis; 5.3.1 Computer graphics; 5.3.2 Image quilting; References; 6 Returning to the Sierra Nevada; Reference; Part II Methods; 1 Introduction; 2 The algorithmic building blocks; 2.1 Grid and pointset representations; 2.2 Multivariate grids; 2.3 Neighborhoods; 2.4 Storage and restitution of data events; 2.4.1 Raw storage of training image; 2.4.2 Cross-correlation based convolution. 2.4.3 Partial convolution2.4.4 Tree storage; 2.4.5 List storage; 2.4.6 Clustering of patterns; 2.4.7 Parametric representation of patterns; 2.5 Computing distances; 2.5.1 Norms; 2.5.2 Hausdorff distance; 2.5.3 Invariant distances; 2.5.4 Change of variable; 2.5.5 Distances between distributions; 2.6 Sequential simulation; 2.6.1 Random path; 2.6.2 Unilateral path; 2.6.3 Patch-based methods; 2.6.4 Patch carving; 2.7 Multiple grids; 2.8 Conditioning; 2.8.1 The different types of data; 2.8.2 Different types of data: an example; 2.8.3 Steering proportions; References.
Responsibility: Gregoire Mariethoz and Jef Caers.

Abstract:

This book provides a comprehensive introduction to multiple-point geostatistics, where spatial continuity is described using training images. Multiple-point geostatistics aims at bridging the gap  Read more...

Reviews

Editorial reviews

Publisher Synopsis

I benefited from this book and plan to keep it as a resource on my bookshelf. I recommend Multiple-point Geostatistics: Stochastic Modeling with Training Images to my peers in mathematical Read more...

 
User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/890377887> # Multiple-point geostatistics : stochastic modeling with training images
    a schema:MediaObject, schema:CreativeWork, schema:Book ;
    library:oclcnum "890377887" ;
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/enk> ;
    rdfs:comment "Warning: This malformed URI has been treated as a string - 'http://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=1813088";target="_blank'" ;
    rdfs:comment "Warning: This malformed URI has been treated as a string - 'http://images.contentreserve.com/ImageType-100/0128-1/{2681C837-C9EA-403E-8CBF-75A22FCC515C}Img100.jpg'" ;
    schema:about <http://experiment.worldcat.org/entity/work/data/2072765095#Topic/geology_statistical_methods> ; # Geology--Statistical methods
    schema:about <http://experiment.worldcat.org/entity/work/data/2072765095#Topic/geological_modeling> ; # Geological modeling
    schema:about <http://dewey.info/class/551.015195/e23/> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/2072765095#Topic/science_earth_sciences_geology> ; # SCIENCE--Earth Sciences--Geology
    schema:author <http://experiment.worldcat.org/entity/work/data/2072765095#Person/caers_jef> ; # Jef Caers
    schema:author <http://experiment.worldcat.org/entity/work/data/2072765095#Person/mariethoz_gregoire> ; # Gregoire Mariethoz
    schema:bookFormat schema:EBook ;
    schema:datePublished "2015" ;
    schema:description "Multiple-point geostatistics; Contents; Preface; Acknowledgments; Part I Concepts; 1 Hiking in the Sierra Nevada; 1.1 An imaginary outdoor adventure company: Buena Sierra; 1.2 What lies ahead; 2 Spatial estimation based on random function theory; 2.1 Assumptions of stationarity; 2.2 Assumption of stationarity in spatial problems; 2.3 The kriging solution; 2.3.1 Unbiasedness condition; 2.3.2 Minimizing squared loss; 2.4 Estimating covariances; 2.5 Semivariogram modeling; 2.6 Using a limited neighborhood; 2.7 Universal kriging; 2.8 Semivariogram modeling for universal kriging."@en ;
    schema:description ""This book provides a comprehensive introduction to multiple-point geostatistics, where spatial continuity is described using training images. Multiple-point geostatistics aims at bridging the gap between physical modelling/realism and spatio-temporal stochastic modelling. The book provides an overview of this new field in three parts. Part I presents a conceptual comparison between traditional random function theory and stochastic modelling based on training images, where random function theory is not always used. Part II covers in detail various algorithms and methodologies starting from basic building blocks in statistical science and computer science. Concepts such as non-stationary and multi-variate modeling, consistency between data and model, the construction of training images and inverse modelling are treated. Part III covers three example application areas, namely, reservoir modelling, mineral resources modelling and climate model downscaling. This book will be an invaluable reference for students, researchers and practitioners of all areas of the Earth Sciences where forecasting based on spatio-temporal data is performed"--"@en ;
    schema:description ""The topic of this book concerns an area of geostatistics that has commonly been known as multiple-point geostatistics because it uses more than two-point statistics (correlation), traditionally represented by the variogram, to model spatial phenomena"--"@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/2072765095> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isSimilarTo <http://worldcat.org/entity/work/data/2072765095#CreativeWork/multiple_point_geostatistics> ;
    schema:name "Multiple-point geostatistics : stochastic modeling with training images"@en ;
    schema:productID "890377887" ;
    schema:url <http://rbdigital.oneclickdigital.com> ;
    schema:url <http://catalogimages.wiley.com/images/db/jimages/9781118662755.jpg> ;
    schema:url "http://images.contentreserve.com/ImageType-100/0128-1/{2681C837-C9EA-403E-8CBF-75A22FCC515C}Img100.jpg" ;
    schema:url <http://site.ebrary.com/id/10952039> ;
    schema:url "http://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=1813088";target="_blank" ;
    schema:url <http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=863689> ;
    schema:url <https://samples.overdrive.com/multiple-point-geostatistics?.epub-sample.overdrive.com> ;
    schema:url <http://public.ebookcentral.proquest.com/choice/publicfullrecord.aspx?p=1813088> ;
    schema:url <https://www.overdrive.com/search?q=2681C837-C9EA-403E-8CBF-75A22FCC515C> ;
    schema:workExample <http://worldcat.org/isbn/9781118662946> ;
    schema:workExample <http://worldcat.org/isbn/9781118662939> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/890377887> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/2072765095#Person/caers_jef> # Jef Caers
    a schema:Person ;
    schema:familyName "Caers" ;
    schema:givenName "Jef" ;
    schema:name "Jef Caers" ;
    .

<http://experiment.worldcat.org/entity/work/data/2072765095#Person/mariethoz_gregoire> # Gregoire Mariethoz
    a schema:Person ;
    schema:familyName "Mariethoz" ;
    schema:givenName "Gregoire" ;
    schema:name "Gregoire Mariethoz" ;
    .

<http://experiment.worldcat.org/entity/work/data/2072765095#Topic/geological_modeling> # Geological modeling
    a schema:Intangible ;
    schema:name "Geological modeling"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/2072765095#Topic/geology_statistical_methods> # Geology--Statistical methods
    a schema:Intangible ;
    schema:name "Geology--Statistical methods"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/2072765095#Topic/science_earth_sciences_geology> # SCIENCE--Earth Sciences--Geology
    a schema:Intangible ;
    schema:name "SCIENCE--Earth Sciences--Geology"@en ;
    .

<http://worldcat.org/entity/work/data/2072765095#CreativeWork/multiple_point_geostatistics>
    a schema:CreativeWork ;
    rdfs:label "Multiple-point geostatistics." ;
    schema:description "Print version:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/890377887> ; # Multiple-point geostatistics : stochastic modeling with training images
    .

<http://worldcat.org/isbn/9781118662939>
    a schema:ProductModel ;
    schema:isbn "1118662938" ;
    schema:isbn "9781118662939" ;
    .

<http://worldcat.org/isbn/9781118662946>
    a schema:ProductModel ;
    schema:isbn "1118662946" ;
    schema:isbn "9781118662946" ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.