skip to content
Muscular activity of different shooting distances, different release techniques, and different performance levels, with and without stabilizers, in target archery.
ClosePreview this item
Checking...

Muscular activity of different shooting distances, different release techniques, and different performance levels, with and without stabilizers, in target archery.

Author: JP Clarys Affiliation: Institute of Physical Education and Physiotherapy, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Belgium.J CabriE BollensR SleeckxJ TaeymansAll authors
Edition/Format: Article Article : English
Publication:Journal of sports sciences, 1990 Winter; 8(3): 235-57
Database:From MEDLINE®/PubMed®, a database of the U.S. National Library of Medicine.
Summary:
The quadruple approach in the title refers to four different studies over a period of 3 years. The common factor in these studies is the methodology of the (Brussels) Electromyographic Signal Processing and Analysis System (ESPAS), a hardware and software EMG data acquisition system that has constantly been improved. Therefore, the ESPAS methodology is described extensively (i.e. the electrodes, amplifier,  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

More like this

 

&AllPage.SpinnerRetrieving;

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Document Type: Article
All Authors / Contributors: JP Clarys Affiliation: Institute of Physical Education and Physiotherapy, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Belgium.; J Cabri; E Bollens; R Sleeckx; J Taeymans; M Vermeiren; Van Reeth G; G Voss
ISSN:0264-0414
Language Note: English
Unique Identifier: 118765219
Awards:

Abstract:

The quadruple approach in the title refers to four different studies over a period of 3 years. The common factor in these studies is the methodology of the (Brussels) Electromyographic Signal Processing and Analysis System (ESPAS), a hardware and software EMG data acquisition system that has constantly been improved. Therefore, the ESPAS methodology is described extensively (i.e. the electrodes, amplifier, tape-recorder and processing hardware). Experiment 1 investigated muscular behaviour in target shooting, both indoors (18 and 25 m) and outdoors (50, 70 and 90 m). It was found (via iEMG) that a significant increase in activity only exists between 25 and 50 m, and that there is no linear increase of activity with increased distance. No differences in muscular pattern (IDANCO system: Clarys and Cabri, 1988) or activity between the indoor distances and between the outdoor distances were found. Experiment 2 investigated the muscular economy of four string grips: the three-finger grip, two-finger grip, thumb grip and reversed grip. The largest variations in activity were found for the two most unfamiliar grips, i.e. the thumb and reversed grips; however, low iEMG and the rapid precision improvement (over a limited number of shots) suggest that the thumb grip, if practised long enough, might be the most economical technique. Experiment 3 attempted to differentiate muscular activity and a number of performance variables in three different populations of archers--Olympic athletes, National competitors and beginners--in order to obtain feedback regarding improved performance. Apparently, overall muscle pattern, intensities and arrow speed were not discriminatory. The differences found between the groups (or levels of skill) were affected by the ability to reproduce identical patterns and arrow velocities in consecutive shots and by the constancy of neuromuscular control of the M. trapezius, M. biceps brachii and M. extensor digitorum. Finally, Experiment 4 investigated the muscular activity of elite archers shooting at distances of 70 and 90 m with and without stabilizers. Differences in iEMG were not supported by differences in precision. Over time, the low iEMG in shooting without stabilizers increases precision and delays fatigue.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

All user tags (2)

View most popular tags as: tag list | tag cloud

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


<http://www.worldcat.org/oclc/118765219>
library:oclcnum"118765219"
owl:sameAs<info:oclcnum/118765219>
rdf:typeschema:Article
schema:about
schema:about
schema:contributor
schema:contributor
schema:contributor
schema:contributor
schema:contributor
schema:contributor
schema:contributor
schema:creator
schema:datePublished"1990-12-98"
schema:description"The quadruple approach in the title refers to four different studies over a period of 3 years. The common factor in these studies is the methodology of the (Brussels) Electromyographic Signal Processing and Analysis System (ESPAS), a hardware and software EMG data acquisition system that has constantly been improved. Therefore, the ESPAS methodology is described extensively (i.e. the electrodes, amplifier, tape-recorder and processing hardware). Experiment 1 investigated muscular behaviour in target shooting, both indoors (18 and 25 m) and outdoors (50, 70 and 90 m). It was found (via iEMG) that a significant increase in activity only exists between 25 and 50 m, and that there is no linear increase of activity with increased distance. No differences in muscular pattern (IDANCO system: Clarys and Cabri, 1988) or activity between the indoor distances and between the outdoor distances were found. Experiment 2 investigated the muscular economy of four string grips: the three-finger grip, two-finger grip, thumb grip and reversed grip. The largest variations in activity were found for the two most unfamiliar grips, i.e. the thumb and reversed grips; however, low iEMG and the rapid precision improvement (over a limited number of shots) suggest that the thumb grip, if practised long enough, might be the most economical technique. Experiment 3 attempted to differentiate muscular activity and a number of performance variables in three different populations of archers--Olympic athletes, National competitors and beginners--in order to obtain feedback regarding improved performance. Apparently, overall muscle pattern, intensities and arrow speed were not discriminatory. The differences found between the groups (or levels of skill) were affected by the ability to reproduce identical patterns and arrow velocities in consecutive shots and by the constancy of neuromuscular control of the M. trapezius, M. biceps brachii and M. extensor digitorum. Finally, Experiment 4 investigated the muscular activity of elite archers shooting at distances of 70 and 90 m with and without stabilizers. Differences in iEMG were not supported by differences in precision. Over time, the low iEMG in shooting without stabilizers increases precision and delays fatigue."
schema:exampleOfWork<http://worldcat.org/entity/work/id/99405930>
schema:isPartOf
schema:isPartOf
schema:name"Muscular activity of different shooting distances, different release techniques, and different performance levels, with and without stabilizers, in target archery."
schema:pageStart"235"
schema:url

Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.