skip to content
Nonlinear Symmetries and Nonlinear Equations Preview this item
ClosePreview this item
Checking...

Nonlinear Symmetries and Nonlinear Equations

Author: Giuseppe Gaeta
Publisher: Dordrecht : Springer Netherlands, 1994.
Series: Mathematics and Its Applications, 299.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Database:WorldCat
Summary:
This book serves as an introduction to the use of nonlinear symmetries in studying, simplifying and solving nonlinear equations. Part I provides a self-contained introduction to the theory. This emphasizes an intuitive understanding of jet spaces and the geometry of differential equations, and a special treatment of evolution problems and dynamical systems, including original results. In Part II the theory is  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Print version:
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Giuseppe Gaeta
ISBN: 9789401110181 9401110182
OCLC Number: 851371294
Description: 1 online resource (xix, 258 pages).
Contents: I --
Geometric setting --
a): Equations and functions as geometrical objects --
b): Symmetry --
References --
II --
Symmetries and their use --
1. Symmetry of a given equation --
2. Linear and C-linearizable equations --
3. Equations with a given symmetry --
4. Canonical coordinates --
5. Symmetry and reduction of algebraic equations --
6. Symmetry and reduction of ODEs --
7. Symmetry and symmetric solutions of PDEs --
8. Conditional symmetries --
9. Conditional symmetries and boundary conditions --
References --
III --
Examples --
1. Symmetry of algebraic equations --
2. Symmetry of ODEs (one-soliton KdV) --
3. Symmetry of evolution PDEs (the heat equation) --
4. Table of prolongations for ODEs --
5. Table of prolongations for PDEs --
IV --
Evolution equations --
a): Evolution equations --
general features --
b): Dynamical systems (ODEs) --
c): Periodic solutions --
d): Evolution PDEs --
References --
V --
Variational problems --
1. Variational symmetries and variational problems --
2. Variational symmetries and conservation laws: Lagrangian mechanics and Noether theorem --
3. Conserved quantities for higher order variational problems: the general Noether theorem --
4. Noether theorem and divergence symmetries --
5. Variational symmetries and reduction of order --
6. Variational symmetries, conservation laws, and the Noether theorem for infinite dimensional variational problems --
References --
VI --
Bifurcation problems --
1. Bifurcation problems: general setting --
2. Bifurcation theory and linear symmetry --
3. Lie-point symmetries and bifurcation --
4. Symmetries of systems of ODEs depending on a parameter --
5. Bifurcation points and symmetry algebra --
6. Extensions --
References --
VII --
Gauge theories --
1. Symmetry breaking in potential problems and gauge theories --
2. Strata in RN --
3. Michel's theorem --
4. Zero-th order gauge functionals --
5. Discussion --
6. First order gauge functionals --
7. Geometry and stratification of? --
8. Stratification of gauge orbit space --
9. Maximal strata in gauge orbit space --
10. The equivariant branching lemma --
11. A reduction lemma for gauge invariant potentials --
12. Some examples of reduction --
13. Base space symmetries --
14. A scenario for pattern formation --
15. A scenario for phase coexistence --
References --
VIII --
Reduction and equivariant branching lemma --
1. General setting (ODEs) --
2. The reduction lemma --
3. The equivariant branching lemma --
4. General setting (PDEs) --
5. Gauge symmetries and Lie point vector fields --
6. Reduction lemma for gauge theories --
7. Symmetric critical sections of gauge functionals --
8. Equivariant branching lemma for gauge functionals --
9. Evolution PDEs --
10. Symmetries of evolution PDEs --
11. Reduction lemma for evolution PDEs --
References --
IX --
Further developements --
1. Missing sections --
2. Non Linear Superposition Principles --
3. Symmetry and integrability --
second order ODEs --
4. Infinite dimensional (and Kac-Moody) Lie-point symmetry algebras --
5. Symmetry classification of ODEs --
6. The Lie determinant --
7. Systems of linear second order ODEs --
8. Cohomology and symmetry of differential equations --
9. Contact symmetries of evolution equations --
10. Conditional symmetries, and Boussinesq equation --
11. Lie point symmetries and maps --
References --
X --
Equations of Physics --
1. Fokker-Planck type equations --
2. Schroedinger equation for atoms and molecules --
3. Einstein (vacuum) field equations --
4. Landau-Ginzburg equation --
5. The?6 field theory (three dimensional Landau-Ginzburg equation) --
6. An equation arising in plasma physics --
7. Navier-Stokes equations --
8. Yang-Mills equations --
9. Lattice equations and the Toda lattice --
References --
References and bibliography.
Series Title: Mathematics and Its Applications, 299.
Responsibility: by Giuseppe Gaeta.

Abstract:

This book serves as an introduction to the use of nonlinear symmetries in studying, simplifying and solving nonlinear equations. Part I provides a self-contained introduction to the theory. This emphasizes an intuitive understanding of jet spaces and the geometry of differential equations, and a special treatment of evolution problems and dynamical systems, including original results. In Part II the theory is applied to equivariant dynamics, to bifurcation theory and to gauge symmetries, reporting recent results by the author. In particular, the fundamental results of equivariant bifurcation theory are extended to the case of nonlinear symmetries. The final part of the book gives an overview of new developments, including a number of applications, mainly in the physical sciences. An extensive and up-to-date list of references dealing with nonlinear symmetries completes the volume. This volume will be of interest to researchers in mathematics and mathematical physics.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/851371294> # Nonlinear Symmetries and Nonlinear Equations
    a schema:MediaObject, schema:Book, schema:CreativeWork ;
   library:oclcnum "851371294" ;
   library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/143926732#Place/dordrecht> ; # Dordrecht
   library:placeOfPublication <http://id.loc.gov/vocabulary/countries/ne> ;
   schema:about <http://dewey.info/class/515.352/e23/> ;
   schema:about <http://id.worldcat.org/fast/893484> ; # Differential equations, Partial
   schema:about <http://id.worldcat.org/fast/893446> ; # Differential equations
   schema:about <http://id.worldcat.org/fast/1012163> ; # Mathematics
   schema:bookFormat schema:EBook ;
   schema:creator <http://experiment.worldcat.org/entity/work/data/143926732#Person/gaeta_giuseppe> ; # Giuseppe Gaeta
   schema:datePublished "1994" ;
   schema:description "I -- Geometric setting -- a): Equations and functions as geometrical objects -- b): Symmetry -- References -- II -- Symmetries and their use -- 1. Symmetry of a given equation -- 2. Linear and C-linearizable equations -- 3. Equations with a given symmetry -- 4. Canonical coordinates -- 5. Symmetry and reduction of algebraic equations -- 6. Symmetry and reduction of ODEs -- 7. Symmetry and symmetric solutions of PDEs -- 8. Conditional symmetries -- 9. Conditional symmetries and boundary conditions -- References -- III -- Examples -- 1. Symmetry of algebraic equations -- 2. Symmetry of ODEs (one-soliton KdV) -- 3. Symmetry of evolution PDEs (the heat equation) -- 4. Table of prolongations for ODEs -- 5. Table of prolongations for PDEs -- IV -- Evolution equations -- a): Evolution equations -- general features -- b): Dynamical systems (ODEs) -- c): Periodic solutions -- d): Evolution PDEs -- References -- V -- Variational problems -- 1. Variational symmetries and variational problems -- 2. Variational symmetries and conservation laws: Lagrangian mechanics and Noether theorem -- 3. Conserved quantities for higher order variational problems: the general Noether theorem -- 4. Noether theorem and divergence symmetries -- 5. Variational symmetries and reduction of order -- 6. Variational symmetries, conservation laws, and the Noether theorem for infinite dimensional variational problems -- References -- VI -- Bifurcation problems -- 1. Bifurcation problems: general setting -- 2. Bifurcation theory and linear symmetry -- 3. Lie-point symmetries and bifurcation -- 4. Symmetries of systems of ODEs depending on a parameter -- 5. Bifurcation points and symmetry algebra -- 6. Extensions -- References -- VII -- Gauge theories -- 1. Symmetry breaking in potential problems and gauge theories -- 2. Strata in RN -- 3. Michel's theorem -- 4. Zero-th order gauge functionals -- 5. Discussion -- 6. First order gauge functionals -- 7. Geometry and stratification of? -- 8. Stratification of gauge orbit space -- 9. Maximal strata in gauge orbit space -- 10. The equivariant branching lemma -- 11. A reduction lemma for gauge invariant potentials -- 12. Some examples of reduction -- 13. Base space symmetries -- 14. A scenario for pattern formation -- 15. A scenario for phase coexistence -- References -- VIII -- Reduction and equivariant branching lemma -- 1. General setting (ODEs) -- 2. The reduction lemma -- 3. The equivariant branching lemma -- 4. General setting (PDEs) -- 5. Gauge symmetries and Lie point vector fields -- 6. Reduction lemma for gauge theories -- 7. Symmetric critical sections of gauge functionals -- 8. Equivariant branching lemma for gauge functionals -- 9. Evolution PDEs -- 10. Symmetries of evolution PDEs -- 11. Reduction lemma for evolution PDEs -- References -- IX -- Further developements -- 1. Missing sections -- 2. Non Linear Superposition Principles -- 3. Symmetry and integrability -- second order ODEs -- 4. Infinite dimensional (and Kac-Moody) Lie-point symmetry algebras -- 5. Symmetry classification of ODEs -- 6. The Lie determinant -- 7. Systems of linear second order ODEs -- 8. Cohomology and symmetry of differential equations -- 9. Contact symmetries of evolution equations -- 10. Conditional symmetries, and Boussinesq equation -- 11. Lie point symmetries and maps -- References -- X -- Equations of Physics -- 1. Fokker-Planck type equations -- 2. Schroedinger equation for atoms and molecules -- 3. Einstein (vacuum) field equations -- 4. Landau-Ginzburg equation -- 5. The?6 field theory (three dimensional Landau-Ginzburg equation) -- 6. An equation arising in plasma physics -- 7. Navier-Stokes equations -- 8. Yang-Mills equations -- 9. Lattice equations and the Toda lattice -- References -- References and bibliography."@en ;
   schema:description "This book serves as an introduction to the use of nonlinear symmetries in studying, simplifying and solving nonlinear equations. Part I provides a self-contained introduction to the theory. This emphasizes an intuitive understanding of jet spaces and the geometry of differential equations, and a special treatment of evolution problems and dynamical systems, including original results. In Part II the theory is applied to equivariant dynamics, to bifurcation theory and to gauge symmetries, reporting recent results by the author. In particular, the fundamental results of equivariant bifurcation theory are extended to the case of nonlinear symmetries. The final part of the book gives an overview of new developments, including a number of applications, mainly in the physical sciences. An extensive and up-to-date list of references dealing with nonlinear symmetries completes the volume. This volume will be of interest to researchers in mathematics and mathematical physics."@en ;
   schema:exampleOfWork <http://worldcat.org/entity/work/id/143926732> ;
   schema:genre "Electronic books"@en ;
   schema:inLanguage "en" ;
   schema:isPartOf <http://experiment.worldcat.org/entity/work/data/143926732#Series/mathematics_and_its_applications> ; # Mathematics and Its Applications ;
   schema:isSimilarTo <http://worldcat.org/entity/work/data/143926732#CreativeWork/> ;
   schema:name "Nonlinear Symmetries and Nonlinear Equations"@en ;
   schema:productID "851371294" ;
   schema:publication <http://www.worldcat.org/title/-/oclc/851371294#PublicationEvent/dordrecht_springer_netherlands_1994> ;
   schema:publisher <http://experiment.worldcat.org/entity/work/data/143926732#Agent/springer_netherlands> ; # Springer Netherlands
   schema:url <http://dx.doi.org/10.1007/978-94-011-1018-1> ;
   schema:url <http://link.springer.com/10.1007/978-94-011-1018-1> ;
   schema:workExample <http://dx.doi.org/10.1007/978-94-011-1018-1> ;
   schema:workExample <http://worldcat.org/isbn/9789401110181> ;
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/851371294> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/143926732#Agent/springer_netherlands> # Springer Netherlands
    a bgn:Agent ;
   schema:name "Springer Netherlands" ;
    .

<http://experiment.worldcat.org/entity/work/data/143926732#Person/gaeta_giuseppe> # Giuseppe Gaeta
    a schema:Person ;
   schema:familyName "Gaeta" ;
   schema:givenName "Giuseppe" ;
   schema:name "Giuseppe Gaeta" ;
    .

<http://experiment.worldcat.org/entity/work/data/143926732#Series/mathematics_and_its_applications> # Mathematics and Its Applications ;
    a bgn:PublicationSeries ;
   schema:hasPart <http://www.worldcat.org/oclc/851371294> ; # Nonlinear Symmetries and Nonlinear Equations
   schema:name "Mathematics and Its Applications ;" ;
    .

<http://id.worldcat.org/fast/1012163> # Mathematics
    a schema:Intangible ;
   schema:name "Mathematics"@en ;
    .

<http://id.worldcat.org/fast/893446> # Differential equations
    a schema:Intangible ;
   schema:name "Differential equations"@en ;
    .

<http://id.worldcat.org/fast/893484> # Differential equations, Partial
    a schema:Intangible ;
   schema:name "Differential equations, Partial"@en ;
    .

<http://link.springer.com/10.1007/978-94-011-1018-1>
   rdfs:comment "from Springer" ;
   rdfs:comment "(Unlimited Concurrent Users)" ;
    .

<http://worldcat.org/entity/work/data/143926732#CreativeWork/>
    a schema:CreativeWork ;
   schema:description "Print version:" ;
   schema:isSimilarTo <http://www.worldcat.org/oclc/851371294> ; # Nonlinear Symmetries and Nonlinear Equations
    .

<http://worldcat.org/isbn/9789401110181>
    a schema:ProductModel ;
   schema:isbn "9401110182" ;
   schema:isbn "9789401110181" ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.