skip to content
Operator algebras and their modules : an operator space approach Preview this item
ClosePreview this item
Checking...

Operator algebras and their modules : an operator space approach

Author: David P Blecher; Christian Le Merdy
Publisher: Oxford ; New York : Clarendon, 2004.
Series: Oxford science publications.; London Mathematical Society monographs, new ser., no. 30.
Edition/Format:   Print book : EnglishView all editions and formats
Database:WorldCat
Summary:
This reference presents the general theory of algebras of operators on a Hilbert space, and the modules over such algebras. The new theory of operator spaces is presented early on and the text assembles the basic concepts, theory and methodologies needed to equip a beginning researcher in this area.
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Material Type: Internet resource
Document Type: Book, Internet Resource
All Authors / Contributors: David P Blecher; Christian Le Merdy
ISBN: 0198526598 9780198526599
OCLC Number: 56644428
Description: x, 387 pages ; 24 cm.
Contents: Operator spaces --
Basic theory of operator algebras --
Basic theory of operator modules --
Some 'extremal theory' --
Completely isomorphic theory of operator algebras --
Tensor products of operator algebras --
Selfadjointness criteria --
C*-modules and operator spaces.
Series Title: Oxford science publications.; London Mathematical Society monographs, new ser., no. 30.
Responsibility: David P. Blecher, Christian Le Merdy.
More information:

Abstract:

This invaluable reference tool is the first to present the general theory of algebras of operators on a Hilbert space, and the modules over such algebras. The new theory of operator spaces is  Read more...

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/56644428> # Operator algebras and their modules : an operator space approach
    a schema:Book, schema:CreativeWork ;
   library:oclcnum "56644428" ;
   library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/792927508#Place/oxford> ; # Oxford
   library:placeOfPublication <http://id.loc.gov/vocabulary/countries/enk> ;
   library:placeOfPublication <http://dbpedia.org/resource/New_York_City> ; # New York
   schema:about <http://id.worldcat.org/fast/1046408> ; # Operator algebras
   schema:about <http://experiment.worldcat.org/entity/work/data/792927508#Topic/operatoralgebra> ; # Operatoralgebra
   schema:about <http://id.worldcat.org/fast/956785> ; # Hilbert space
   schema:about <http://experiment.worldcat.org/entity/work/data/792927508#Topic/hilbert_espace_de> ; # Hilbert, Espace de
   schema:about <http://experiment.worldcat.org/entity/work/data/792927508#Topic/algebres_d_operateurs> ; # Algèbres d'opérateurs
   schema:about <http://dewey.info/class/512.55/e22/> ;
   schema:about <http://id.worldcat.org/fast/1046418> ; # Operator spaces
   schema:about <http://experiment.worldcat.org/entity/work/data/792927508#Topic/espaces_d_operateurs> ; # Espaces d'opérateurs
   schema:bookFormat bgn:PrintBook ;
   schema:contributor <http://experiment.worldcat.org/entity/work/data/792927508#Person/le_merdy_christian> ; # Christian Le Merdy
   schema:creator <http://viaf.org/viaf/54423935> ; # David P. Blecher
   schema:datePublished "2004" ;
   schema:description "Operator spaces -- Basic theory of operator algebras -- Basic theory of operator modules -- Some 'extremal theory' -- Completely isomorphic theory of operator algebras -- Tensor products of operator algebras -- Selfadjointness criteria -- C*-modules and operator spaces."@en ;
   schema:description "This reference presents the general theory of algebras of operators on a Hilbert space, and the modules over such algebras. The new theory of operator spaces is presented early on and the text assembles the basic concepts, theory and methodologies needed to equip a beginning researcher in this area."@en ;
   schema:exampleOfWork <http://worldcat.org/entity/work/id/792927508> ;
   schema:inLanguage "en" ;
   schema:isPartOf <http://experiment.worldcat.org/entity/work/data/792927508#Series/london_mathematical_society_monographs> ; # London Mathematical Society monographs ;
   schema:isPartOf <http://experiment.worldcat.org/entity/work/data/792927508#Series/oxford_science_publications> ; # Oxford science publications.
   schema:name "Operator algebras and their modules : an operator space approach"@en ;
   schema:productID "56644428" ;
   schema:publication <http://www.worldcat.org/title/-/oclc/56644428#PublicationEvent/oxford_new_york_clarendon_2004> ;
   schema:publisher <http://experiment.worldcat.org/entity/work/data/792927508#Agent/clarendon> ; # Clarendon
   schema:url <http://bvbr.bib-bvb.de:8991/F?func=service&doc_library=BVB01&doc_number=012893654&line_number=0001&func_code=DB_RECORDS&service_type=MEDIA> ;
   schema:url <http://catdir.loc.gov/catdir/enhancements/fy0626/2005272320-t.html> ;
   schema:workExample <http://worldcat.org/isbn/9780198526599> ;
   umbel:isLike <http://bnb.data.bl.uk/id/resource/GBA454252> ;
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/56644428> ;
    .


Related Entities

<http://dbpedia.org/resource/New_York_City> # New York
    a schema:Place ;
   schema:name "New York" ;
    .

<http://experiment.worldcat.org/entity/work/data/792927508#Person/le_merdy_christian> # Christian Le Merdy
    a schema:Person ;
   schema:familyName "Le Merdy" ;
   schema:givenName "Christian" ;
   schema:name "Christian Le Merdy" ;
    .

<http://experiment.worldcat.org/entity/work/data/792927508#Series/london_mathematical_society_monographs> # London Mathematical Society monographs ;
    a bgn:PublicationSeries ;
   schema:hasPart <http://www.worldcat.org/oclc/56644428> ; # Operator algebras and their modules : an operator space approach
   schema:name "London Mathematical Society monographs ;" ;
    .

<http://experiment.worldcat.org/entity/work/data/792927508#Series/oxford_science_publications> # Oxford science publications.
    a bgn:PublicationSeries ;
   schema:hasPart <http://www.worldcat.org/oclc/56644428> ; # Operator algebras and their modules : an operator space approach
   schema:name "Oxford science publications." ;
   schema:name "Oxford science publications" ;
    .

<http://experiment.worldcat.org/entity/work/data/792927508#Topic/algebres_d_operateurs> # Algèbres d'opérateurs
    a schema:Intangible ;
   schema:name "Algèbres d'opérateurs"@en ;
   schema:name "Algèbres d'opérateurs"@fr ;
    .

<http://experiment.worldcat.org/entity/work/data/792927508#Topic/espaces_d_operateurs> # Espaces d'opérateurs
    a schema:Intangible ;
   schema:name "Espaces d'opérateurs"@en ;
   schema:name "Espaces d'opérateurs"@fr ;
    .

<http://experiment.worldcat.org/entity/work/data/792927508#Topic/hilbert_espace_de> # Hilbert, Espace de
    a schema:Intangible ;
   schema:name "Hilbert, Espace de"@en ;
   schema:name "Hilbert, Espace de"@fr ;
    .

<http://id.worldcat.org/fast/1046408> # Operator algebras
    a schema:Intangible ;
   schema:name "Operator algebras"@en ;
    .

<http://id.worldcat.org/fast/1046418> # Operator spaces
    a schema:Intangible ;
   schema:name "Operator spaces"@en ;
    .

<http://id.worldcat.org/fast/956785> # Hilbert space
    a schema:Intangible ;
   schema:name "Hilbert space"@en ;
    .

<http://viaf.org/viaf/54423935> # David P. Blecher
    a schema:Person ;
   schema:birthDate "1962" ;
   schema:familyName "Blecher" ;
   schema:givenName "David P." ;
   schema:name "David P. Blecher" ;
    .

<http://worldcat.org/isbn/9780198526599>
    a schema:ProductModel ;
   schema:isbn "0198526598" ;
   schema:isbn "9780198526599" ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.