zum Inhalt wechseln
Orientability of moduli spaces and open Gromov-Witten invariants Titelvorschau
SchließenTitelvorschau
Prüfung…

Orientability of moduli spaces and open Gromov-Witten invariants

Verfasser/in: Penka Vasileva Georgieva; Eleny Ionel; Y Eliashberg; Jun Li; Stanford University. Department of Mathematics.
Verlag: 2011.
Dissertation: Thesis (Ph. D.)--Stanford University, 2011.
Ausgabe/Format   Diplomarbeit/Dissertation : Dokument : Diplomarbeit/Dissertation : E-Book   Computer-Datei : Englisch
Datenbank:WorldCat
Zusammenfassung:
We show that the local system of orientations on the moduli space of J-holomorphic maps from a bordered Riemann surface is isomorphic to the pull-back of a local system defined on the product of the Lagrangian and its free loop space. The latter is defined using only the first and second Stiefel-Whitney classes of the Lagrangian. In the presence of an anti-symplectic involution, whose fixed locus is a relatively  Weiterlesen…
Bewertung:

(noch nicht bewertet) 0 mit Rezensionen - Verfassen Sie als Erste eine Rezension.

 

Online anzeigen

Links zu diesem Titel

Exemplar ausleihen

&AllPage.SpinnerRetrieving; Suche nach Bibliotheken, die diesen Titel besitzen ...

Details

Medientyp: Dokument, Diplomarbeit/Dissertation, Internetquelle
Dokumenttyp: Internet-Ressource, Computer-Datei
Alle Autoren: Penka Vasileva Georgieva; Eleny Ionel; Y Eliashberg; Jun Li; Stanford University. Department of Mathematics.
OCLC-Nummer: 747192931
Anmerkungen: Submitted to the Department of Mathematics.
Beschreibung: 1 online resource.
Verfasserangabe: Penka Vasileva Georgieva.

Abstract:

We show that the local system of orientations on the moduli space of J-holomorphic maps from a bordered Riemann surface is isomorphic to the pull-back of a local system defined on the product of the Lagrangian and its free loop space. The latter is defined using only the first and second Stiefel-Whitney classes of the Lagrangian. In the presence of an anti-symplectic involution, whose fixed locus is a relatively spin Lagrangian, we define open Gromov-Witten type invariants in genus zero.

Rezensionen

Nutzer-Rezensionen
Suche nach GoodReads-Rezensionen
Suche nach DOGObooks-Rezensionen…

Tags

Tragen Sie als Erste Tags ein.
Anfrage bestätigen

Sie haben diesen Titel bereits angefordert. Wenn Sie trotzdem fortfahren möchten, klicken Sie auf OK.

Verlinkung


<http://www.worldcat.org/oclc/747192931>
library:oclcnum"747192931"
owl:sameAs<info:oclcnum/747192931>
rdf:typej.1:Web_document
rdf:typej.1:Thesis
rdf:typeschema:Book
schema:contributor
<http://viaf.org/viaf/139860406>
rdf:typeschema:Organization
schema:name"Stanford University. Department of Mathematics."
schema:contributor
schema:contributor
schema:contributor
schema:creator
schema:datePublished"2011"
schema:description"We show that the local system of orientations on the moduli space of J-holomorphic maps from a bordered Riemann surface is isomorphic to the pull-back of a local system defined on the product of the Lagrangian and its free loop space. The latter is defined using only the first and second Stiefel-Whitney classes of the Lagrangian. In the presence of an anti-symplectic involution, whose fixed locus is a relatively spin Lagrangian, we define open Gromov-Witten type invariants in genus zero."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/997944247>
schema:inLanguage"en"
schema:name"Orientability of moduli spaces and open Gromov-Witten invariants"@en
schema:url<http://purl.stanford.edu/jr504gh8190>
schema:url

Content-negotiable representations

Fenster schließen

Bitte in WorldCat einloggen 

Sie haben kein Konto? Sie können sehr einfach ein kostenloses Konto anlegen,.