omitir hasta el contenido
Orientability of moduli spaces and open Gromov-Witten invariants Ver este material de antemano
CerrarVer este material de antemano
Chequeando…

Orientability of moduli spaces and open Gromov-Witten invariants

Autor: Penka Vasileva Georgieva; Eleny Ionel; Y Eliashberg; Jun Li; Stanford University. Department of Mathematics.
Editorial: 2011.
Disertación: Thesis (Ph. D.)--Stanford University, 2011.
Edición/Formato:   Tesis/disertación : Documento : Tesis de maestría/doctorado : Libro-e   Archivo de computadora : Inglés (eng)
Base de datos:WorldCat
Resumen:
We show that the local system of orientations on the moduli space of J-holomorphic maps from a bordered Riemann surface is isomorphic to the pull-back of a local system defined on the product of the Lagrangian and its free loop space. The latter is defined using only the first and second Stiefel-Whitney classes of the Lagrangian. In the presence of an anti-symplectic involution, whose fixed locus is a relatively  Leer más
Calificación:

(todavía no calificado) 0 con reseñas - Ser el primero.

 

Encontrar un ejemplar en línea

Enlaces a este material

Encontrar un ejemplar en la biblioteca

&AllPage.SpinnerRetrieving; Encontrando bibliotecas que tienen este material…

Detalles

Tipo de material: Documento, Tesis de maestría/doctorado, Recurso en Internet
Tipo de documento: Recurso en Internet, Archivo de computadora
Todos autores / colaboradores: Penka Vasileva Georgieva; Eleny Ionel; Y Eliashberg; Jun Li; Stanford University. Department of Mathematics.
Número OCLC: 747192931
Notas: Submitted to the Department of Mathematics.
Descripción: 1 online resource.
Responsabilidad: Penka Vasileva Georgieva.

Resumen:

We show that the local system of orientations on the moduli space of J-holomorphic maps from a bordered Riemann surface is isomorphic to the pull-back of a local system defined on the product of the Lagrangian and its free loop space. The latter is defined using only the first and second Stiefel-Whitney classes of the Lagrangian. In the presence of an anti-symplectic involution, whose fixed locus is a relatively spin Lagrangian, we define open Gromov-Witten type invariants in genus zero.

Reseñas

Reseñas contribuidas por usuarios
Recuperando reseñas de GoodReads…
Recuperando reseñas de DOGObooks…

Etiquetas

Ser el primero.
Confirmar este pedido

Ya ha pedido este material. Escoja OK si desea procesar el pedido de todos modos.

Datos enlazados


<http://www.worldcat.org/oclc/747192931>
bgn:inSupportOf"Thesis (Ph. D.)--Stanford University, 2011."
library:oclcnum"747192931"
rdf:typebgn:Thesis
rdf:typej.0:Web_document
rdf:typeschema:Book
rdf:typeschema:MediaObject
rdf:valueUnknown value: dct
rdf:valueUnknown value: deg
schema:contributor
<http://viaf.org/viaf/139860406>
rdf:typeschema:Organization
schema:name"Stanford University. Department of Mathematics."
schema:contributor
schema:contributor
schema:contributor
schema:creator
schema:datePublished"2011"
schema:description"We show that the local system of orientations on the moduli space of J-holomorphic maps from a bordered Riemann surface is isomorphic to the pull-back of a local system defined on the product of the Lagrangian and its free loop space. The latter is defined using only the first and second Stiefel-Whitney classes of the Lagrangian. In the presence of an anti-symplectic involution, whose fixed locus is a relatively spin Lagrangian, we define open Gromov-Witten type invariants in genus zero."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/997944247>
schema:inLanguage"en"
schema:name"Orientability of moduli spaces and open Gromov-Witten invariants"@en
schema:publication
schema:url<http://purl.stanford.edu/jr504gh8190>
wdrs:describedby

Content-negotiable representations

Cerrar ventana

Inicie una sesión con WorldCat 

¿No tienes una cuenta? Puede fácilmente crear una cuenta gratuita.