passa ai contenuti
Orientability of moduli spaces and open Gromov-Witten invariants Anteprima di questo documento
ChiudiAnteprima di questo documento
Stiamo controllando…

Orientability of moduli spaces and open Gromov-Witten invariants

Autore: Penka Vasileva Georgieva; Eleny Ionel; Y Eliashberg; Jun Li; Stanford University. Department of Mathematics.
Editore: 2011.
Tesi: Thesis (Ph. D.)--Stanford University, 2011.
Edizione/Formato:   Tesi/dissertazione : Document : Thesis/dissertation : eBook   Computer File : English
Banca dati:WorldCat
Sommario:
We show that the local system of orientations on the moduli space of J-holomorphic maps from a bordered Riemann surface is isomorphic to the pull-back of a local system defined on the product of the Lagrangian and its free loop space. The latter is defined using only the first and second Stiefel-Whitney classes of the Lagrangian. In the presence of an anti-symplectic involution, whose fixed locus is a relatively  Per saperne di più…
Voto:

(non ancora votato) 0 con commenti - Diventa il primo.

 

Trova una copia online

Collegamenti a questo documento

Trova una copia in biblioteca

&AllPage.SpinnerRetrieving; Stiamo ricercando le biblioteche che possiedono questo documento…

Dettagli

Tipo materiale: Document, Thesis/dissertation, Risorsa internet
Tipo documento: Internet Resource, Computer File
Tutti gli autori / Collaboratori: Penka Vasileva Georgieva; Eleny Ionel; Y Eliashberg; Jun Li; Stanford University. Department of Mathematics.
Numero OCLC: 747192931
Note: Submitted to the Department of Mathematics.
Descrizione: 1 online resource.
Responsabilità: Penka Vasileva Georgieva.

Abstract:

We show that the local system of orientations on the moduli space of J-holomorphic maps from a bordered Riemann surface is isomorphic to the pull-back of a local system defined on the product of the Lagrangian and its free loop space. The latter is defined using only the first and second Stiefel-Whitney classes of the Lagrangian. In the presence of an anti-symplectic involution, whose fixed locus is a relatively spin Lagrangian, we define open Gromov-Witten type invariants in genus zero.

Commenti

Commenti degli utenti
Recuperando commenti GoodReads…
Stiamo recuperando commenti DOGObooks

Etichette

Diventa il primo.
Conferma questa richiesta

Potresti aver già richiesto questo documento. Seleziona OK se si vuole procedere comunque con questa richiesta.

Dati collegati


<http://www.worldcat.org/oclc/747192931>
bgn:inSupportOf"Thesis (Ph. D.)--Stanford University, 2011."
library:oclcnum"747192931"
rdf:typebgn:Thesis
rdf:typej.0:Web_document
rdf:typeschema:Book
rdf:typeschema:MediaObject
rdf:valueUnknown value: dct
rdf:valueUnknown value: deg
schema:contributor
<http://viaf.org/viaf/139860406>
rdf:typeschema:Organization
schema:name"Stanford University. Department of Mathematics."
schema:contributor
schema:contributor
schema:contributor
schema:creator
schema:datePublished"2011"
schema:description"We show that the local system of orientations on the moduli space of J-holomorphic maps from a bordered Riemann surface is isomorphic to the pull-back of a local system defined on the product of the Lagrangian and its free loop space. The latter is defined using only the first and second Stiefel-Whitney classes of the Lagrangian. In the presence of an anti-symplectic involution, whose fixed locus is a relatively spin Lagrangian, we define open Gromov-Witten type invariants in genus zero."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/997944247>
schema:inLanguage"en"
schema:name"Orientability of moduli spaces and open Gromov-Witten invariants"@en
schema:publication
schema:url<http://purl.stanford.edu/jr504gh8190>
wdrs:describedby

Content-negotiable representations

Chiudi finestra

Per favore entra in WorldCat 

Non hai un account? Puoi facilmente crearne uno gratuito.