跳到内容
Orientability of moduli spaces and open Gromov-Witten invariants 预览资料
关闭预览资料
正在查...

Orientability of moduli spaces and open Gromov-Witten invariants

著者: Penka Vasileva Georgieva; Eleny Ionel; Y Eliashberg; Jun Li; Stanford University. Department of Mathematics.
出版商: 2011.
论文: Thesis (Ph. D.)--Stanford University, 2011.
版本/格式:   硕士/博士论文 : 文献 : 硕士论文/博士论文 : 电子图书   计算机文档 : 英语
数据库:WorldCat
提要:
We show that the local system of orientations on the moduli space of J-holomorphic maps from a bordered Riemann surface is isomorphic to the pull-back of a local system defined on the product of the Lagrangian and its free loop space. The latter is defined using only the first and second Stiefel-Whitney classes of the Lagrangian. In the presence of an anti-symplectic involution, whose fixed locus is a relatively  再读一些...
评估:

(尚未评估) 0 附有评论 - 争取成为第一个。

 

在线查找

与资料的链接

在图书馆查找

&AllPage.SpinnerRetrieving; 正在查找有这资料的图书馆...

详细书目

材料类型: 文献, 硕士论文/博士论文, 互联网资源
文件类型: 互联网资源, 计算机文档
所有的著者/提供者: Penka Vasileva Georgieva; Eleny Ionel; Y Eliashberg; Jun Li; Stanford University. Department of Mathematics.
OCLC号码: 747192931
注意: Submitted to the Department of Mathematics.
描述: 1 online resource.
责任: Penka Vasileva Georgieva.

摘要:

We show that the local system of orientations on the moduli space of J-holomorphic maps from a bordered Riemann surface is isomorphic to the pull-back of a local system defined on the product of the Lagrangian and its free loop space. The latter is defined using only the first and second Stiefel-Whitney classes of the Lagrangian. In the presence of an anti-symplectic involution, whose fixed locus is a relatively spin Lagrangian, we define open Gromov-Witten type invariants in genus zero.

评论

用户提供的评论
正在获取GoodReads评论...
正在检索DOGObooks的评论

标签

争取是第一个!
确认申请

你可能已经申请过这份资料。如果还是想申请,请选确认。

链接数据


<http://www.worldcat.org/oclc/747192931>
library:oclcnum"747192931"
owl:sameAs<info:oclcnum/747192931>
rdf:typej.1:Web_document
rdf:typej.1:Thesis
rdf:typeschema:Book
schema:contributor
<http://viaf.org/viaf/139860406>
rdf:typeschema:Organization
schema:name"Stanford University. Department of Mathematics."
schema:contributor
schema:contributor
schema:contributor
schema:creator
schema:datePublished"2011"
schema:description"We show that the local system of orientations on the moduli space of J-holomorphic maps from a bordered Riemann surface is isomorphic to the pull-back of a local system defined on the product of the Lagrangian and its free loop space. The latter is defined using only the first and second Stiefel-Whitney classes of the Lagrangian. In the presence of an anti-symplectic involution, whose fixed locus is a relatively spin Lagrangian, we define open Gromov-Witten type invariants in genus zero."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/997944247>
schema:inLanguage"en"
schema:name"Orientability of moduli spaces and open Gromov-Witten invariants"@en
schema:url<http://purl.stanford.edu/jr504gh8190>
schema:url

Content-negotiable representations

关闭窗口

请登入WorldCat 

没有张号吗?很容易就可以 建立免费的账号.