跳至内容
Orientability of moduli spaces and open Gromov-Witten invariants 線上預覽
關閉線上預覽
正在查...

Orientability of moduli spaces and open Gromov-Witten invariants

作者: Penka Vasileva Georgieva; Eleny Ionel; Y Eliashberg; Jun Li; Stanford University. Department of Mathematics.
出版商: 2011.
論文: Thesis (Ph. D.)--Stanford University, 2011.
版本/格式:   碩士/博士論文 : 文獻 : 碩士論文/博士論文 : 電子書   電腦資料 : 英語
資料庫:WorldCat
提要:
We show that the local system of orientations on the moduli space of J-holomorphic maps from a bordered Riemann surface is isomorphic to the pull-back of a local system defined on the product of the Lagrangian and its free loop space. The latter is defined using only the first and second Stiefel-Whitney classes of the Lagrangian. In the presence of an anti-symplectic involution, whose fixed locus is a relatively  再讀一些...
評定級別:

(尚未評分) 0 附有評論 - 成爲第一個。

 

在線上查詢

與資料的連結

在圖書館查詢

&AllPage.SpinnerRetrieving; 正在查詢有此資料的圖書館...

詳細書目

資料類型: 文獻, 碩士論文/博士論文, 網際網路資源
文件類型: 網路資源, 電腦資料
所有的作者/貢獻者: Penka Vasileva Georgieva; Eleny Ionel; Y Eliashberg; Jun Li; Stanford University. Department of Mathematics.
OCLC系統控制編碼: 747192931
注意: Submitted to the Department of Mathematics.
描述: 1 online resource.
責任: Penka Vasileva Georgieva.

摘要:

We show that the local system of orientations on the moduli space of J-holomorphic maps from a bordered Riemann surface is isomorphic to the pull-back of a local system defined on the product of the Lagrangian and its free loop space. The latter is defined using only the first and second Stiefel-Whitney classes of the Lagrangian. In the presence of an anti-symplectic involution, whose fixed locus is a relatively spin Lagrangian, we define open Gromov-Witten type invariants in genus zero.

評論

讀者提供的評論
正在擷取GoodReads評論...
正在擷取DOGObooks的評論

標籤

成爲第一個
確認申請

你可能已經申請過這份資料。若還是想申請,請選確認。

連結資料


<http://www.worldcat.org/oclc/747192931>
library:oclcnum"747192931"
owl:sameAs<info:oclcnum/747192931>
rdf:typej.1:Web_document
rdf:typej.1:Thesis
rdf:typeschema:Book
schema:contributor
<http://viaf.org/viaf/139860406>
rdf:typeschema:Organization
schema:name"Stanford University. Department of Mathematics."
schema:contributor
schema:contributor
schema:contributor
schema:creator
schema:datePublished"2011"
schema:description"We show that the local system of orientations on the moduli space of J-holomorphic maps from a bordered Riemann surface is isomorphic to the pull-back of a local system defined on the product of the Lagrangian and its free loop space. The latter is defined using only the first and second Stiefel-Whitney classes of the Lagrangian. In the presence of an anti-symplectic involution, whose fixed locus is a relatively spin Lagrangian, we define open Gromov-Witten type invariants in genus zero."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/997944247>
schema:inLanguage"en"
schema:name"Orientability of moduli spaces and open Gromov-Witten invariants"@en
schema:url<http://purl.stanford.edu/jr504gh8190>
schema:url

Content-negotiable representations

關閉視窗

請登入WorldCat 

没有帳號嗎?你可很容易的 建立免費的帳號.