コンテンツへ移動
Orthogonal polynomials and continued fractions : from Euler's point of view 資料のプレビュー
閉じる資料のプレビュー
確認中…

Orthogonal polynomials and continued fractions : from Euler's point of view

著者: S V Khrushchev
出版: Cambridge : Cambridge University Press, 2008.
シリーズ: Encyclopedia of mathematics and its applications, 122.
エディション/フォーマット:   書籍 : Englishすべてのエディションとフォーマットを見る
データベース:WorldCat
概要:
"This new and exciting historical book tells how Euler introduced the idea of orthogonal polynomials and how he combined them with continued fractions, as well as how Brouncker's formula of 1655 can be derived from Euler's efforts in Special Functions and Orthogonal Polynomials. The most interesting applications of this work are discussed, including the great Markoff's Theorem on the Lagrange spectrum, Abel's  続きを読む
評価:

(まだ評価がありません) 0 件のレビュー - 是非あなたから!

件名:
関連情報:

 

オフラインで入手

&AllPage.SpinnerRetrieving; この資料の所蔵館を検索中…

詳細

関連の人物: Leonhard Euler; Leonhard Euler
ドキュメントの種類: 図書
すべての著者/寄与者: S V Khrushchev
ISBN: 9780521854191 0521854199
OCLC No.: 213400529
物理形態: xvi, 478 pages : illustrations ; 25 cm.
コンテンツ: Continued fractions: real numbers --
Continued fractions: algebra --
Continued fractions: analysis --
Continued fractions: Euler --
Continued fractions: Euler's influence --
P-fractions --
Orthogonal polynomials --
Orthogonal polynomials on the unit circle --
Appendix. Continued fractions, observations L. Euler (1739).
シリーズタイトル: Encyclopedia of mathematics and its applications, 122.
責任者: Sergey Khrushchev.

概要:

Full account of Euler's work on continued fractions and orthogonal polynomials; illustrates the significance of his work on mathematics today.  続きを読む

レビュー

編集者のレビュー

出版社によるあらすじ

'The range of themes covered is very wide ...' EMS Newsletter 'The author has done an admirable job of putting together historical anecdotes and excerpts from original sources with some deep and 続きを読む

 
ユーザーレビュー
GoodReadsのレビューを取得中…
DOGObooksのレビューを取得中…

タグ

まずはあなたから!

類似資料

関連件名:(3)

この資料を含むリスト (1)

リクエストの確認

あなたは既にこの資料をリクエストしている可能性があります。このリクエストを続行してよろしければ、OK を選択してください。

リンクデータ


<http://www.worldcat.org/oclc/213400529>
library:oclcnum"213400529"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/213400529>
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:creator
schema:datePublished"2008"
schema:description"Continued fractions: real numbers -- Continued fractions: algebra -- Continued fractions: analysis -- Continued fractions: Euler -- Continued fractions: Euler's influence -- P-fractions -- Orthogonal polynomials -- Orthogonal polynomials on the unit circle -- Appendix. Continued fractions, observations L. Euler (1739)."@en
schema:description""This new and exciting historical book tells how Euler introduced the idea of orthogonal polynomials and how he combined them with continued fractions, as well as how Brouncker's formula of 1655 can be derived from Euler's efforts in Special Functions and Orthogonal Polynomials. The most interesting applications of this work are discussed, including the great Markoff's Theorem on the Lagrange spectrum, Abel's Theorem on integration in finite terms, Chebyshev's Theory of Orthogonal Polynomials, and very recent advances in Orthogonal Polynomials on the unit circle. As continued fractions become more important again, in part due to their use in finding algorithms in approximation theory, this timely book revives the approach of Wallis, Brouncker and Euler and illustrates the continuing significance of their influence. A translation of Euler's famous paper 'Continued Fractions, Observation' is included as an Addendum."--Publisher's description."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/131364506>
schema:inLanguage"en"
schema:name"Orthogonal polynomials and continued fractions : from Euler's point of view"@en
schema:publisher
schema:url
schema:workExample
umbel:isLike<http://bnb.data.bl.uk/id/resource/GBA863671>

Content-negotiable representations

ウインドウを閉じる

WorldCatにログインしてください 

アカウントをお持ちではないですか?簡単に 無料アカウントを作成することができます。.