컨텐츠로 이동
Orthogonal polynomials and continued fractions : from Euler's point of view 해당 항목을 미리보기
닫기해당 항목을 미리보기
확인중입니다…

Orthogonal polynomials and continued fractions : from Euler's point of view

저자: S V Khrushchev
출판사: Cambridge : Cambridge University Press, 2008.
시리즈: Encyclopedia of mathematics and its applications, 122.
판/형식:   도서 : 영어모든 판과 형식 보기
데이터베이스:WorldCat
요약:
"This new and exciting historical book tells how Euler introduced the idea of orthogonal polynomials and how he combined them with continued fractions, as well as how Brouncker's formula of 1655 can be derived from Euler's efforts in Special Functions and Orthogonal Polynomials. The most interesting applications of this work are discussed, including the great Markoff's Theorem on the Lagrange spectrum, Abel's  더 읽기…
평가:

(아무런 평가가 없습니다.) 0 리뷰와 함께 - 첫번째로 올려주세요.

주제
다음과 같습니다:

 

도서관에서 사본 찾기

&AllPage.SpinnerRetrieving; 해당항목을 보유하고 있는 도서관을 찾는 중

상세정보

명시된 사람: Leonhard Euler; Leonhard Euler
문서 형식:
모든 저자 / 참여자: S V Khrushchev
ISBN: 9780521854191 0521854199
OCLC 번호: 213400529
설명: xvi, 478 pages : illustrations ; 25 cm.
내용: Continued fractions: real numbers --
Continued fractions: algebra --
Continued fractions: analysis --
Continued fractions: Euler --
Continued fractions: Euler's influence --
P-fractions --
Orthogonal polynomials --
Orthogonal polynomials on the unit circle --
Appendix. Continued fractions, observations L. Euler (1739).
일련 제목: Encyclopedia of mathematics and its applications, 122.
책임: Sergey Khrushchev.

초록:

Full account of Euler's work on continued fractions and orthogonal polynomials; illustrates the significance of his work on mathematics today.  더 읽기…

리뷰

편집자의 리뷰

출판사 줄거리

'The range of themes covered is very wide ...' EMS Newsletter 'The author has done an admirable job of putting together historical anecdotes and excerpts from original sources with some deep and 더 읽기…

 
사용자-기여 리뷰
GoodReads 리뷰 가져오는 중…
DOGObooks 리뷰를 가지고 오는 중…

태그

첫번째 되기

유사 항목

관련 주제:(3)

이 항목을 가지고 있는 사용자 목록 (1)

요청하신 것을 확인하기

이 항목을 이미 요청하셨을 수도 있습니다. 만약 이 요청을 계속해서 진행하시려면 Ok을 선택하세요.

링크된 데이터


<http://www.worldcat.org/oclc/213400529>
library:oclcnum"213400529"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/213400529>
rdf:typeschema:Book
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:creator
schema:datePublished"2008"
schema:description"Continued fractions: real numbers -- Continued fractions: algebra -- Continued fractions: analysis -- Continued fractions: Euler -- Continued fractions: Euler's influence -- P-fractions -- Orthogonal polynomials -- Orthogonal polynomials on the unit circle -- Appendix. Continued fractions, observations L. Euler (1739)."@en
schema:description""This new and exciting historical book tells how Euler introduced the idea of orthogonal polynomials and how he combined them with continued fractions, as well as how Brouncker's formula of 1655 can be derived from Euler's efforts in Special Functions and Orthogonal Polynomials. The most interesting applications of this work are discussed, including the great Markoff's Theorem on the Lagrange spectrum, Abel's Theorem on integration in finite terms, Chebyshev's Theory of Orthogonal Polynomials, and very recent advances in Orthogonal Polynomials on the unit circle. As continued fractions become more important again, in part due to their use in finding algorithms in approximation theory, this timely book revives the approach of Wallis, Brouncker and Euler and illustrates the continuing significance of their influence. A translation of Euler's famous paper 'Continued Fractions, Observation' is included as an Addendum."--Publisher's description."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/131364506>
schema:inLanguage"en"
schema:name"Orthogonal polynomials and continued fractions : from Euler's point of view"@en
schema:publisher
schema:url
schema:workExample
umbel:isLike<http://bnb.data.bl.uk/id/resource/GBA863671>

Content-negotiable representations

윈도우 닫기

WorldCat에 로그인 하십시오 

계정이 없으세요? 아주 간단한 절차를 통하여 무료 계정을 만드실 수 있습니다.