doorgaan naar inhoud
Orthogonal polynomials and continued fractions : from Euler's point of view Voorbeeldweergave van dit item
SluitenVoorbeeldweergave van dit item
Bezig met controle...

Orthogonal polynomials and continued fractions : from Euler's point of view

Auteur: S V Khrushchev
Uitgever: Cambridge : Cambridge University Press, 2008.
Serie: Encyclopedia of mathematics and its applications, 122.
Editie/Formaat:   Print book : EngelsAlle edities en materiaalsoorten bekijken.
Database:WorldCat
Samenvatting:
"This new and exciting historical book tells how Euler introduced the idea of orthogonal polynomials and how he combined them with continued fractions, as well as how Brouncker's formula of 1655 can be derived from Euler's efforts in Special Functions and Orthogonal Polynomials. The most interesting applications of this work are discussed, including the great Markoff's Theorem on the Lagrange spectrum, Abel's  Meer lezen...
Beoordeling:

(nog niet beoordeeld) 0 met beoordelingen - U bent de eerste

Onderwerpen
Meer in deze trant

 

Zoeken naar een in de bibliotheek beschikbaar exemplaar

&AllPage.SpinnerRetrieving; Bibliotheken met dit item worden gezocht…

Details

Genoemd persoon: Leonhard Euler; Leonhard Euler; Leonhard Euler
Soort document: Boek
Alle auteurs / medewerkers: S V Khrushchev
ISBN: 9780521854191 0521854199
OCLC-nummer: 213400529
Beschrijving: xvi, 478 pages : illustrations ; 25 cm.
Inhoud: Continued fractions: real numbers --
Continued fractions: algebra --
Continued fractions: analysis --
Continued fractions: Euler --
Continued fractions: Euler's influence --
P-fractions --
Orthogonal polynomials --
Orthogonal polynomials on the unit circle --
Appendix. Continued fractions, observations L. Euler (1739).
Serietitel: Encyclopedia of mathematics and its applications, 122.
Verantwoordelijkheid: Sergey Khrushchev.

Fragment:

Full account of Euler's work on continued fractions and orthogonal polynomials; illustrates the significance of his work on mathematics today.  Meer lezen...

Beoordelingen

Professionele beoordelingen

Synopsis uitgever

'The range of themes covered is very wide ...' EMS Newsletter 'The author has done an admirable job of putting together historical anecdotes and excerpts from original sources with some deep and Meer lezen...

 
Beoordelingen door gebruikers
Beoordelingen van GoodReads worden opgehaald...
Bezig met opvragen DOGObooks-reviews...

Tags

U bent de eerste.

Vergelijkbare items

Verwante onderwerpen:(4)

Gebruiker-lijsten met dit item (1)

Bevestig deze aanvraag

Misschien heeft u dit item reeds aangevraagd. Selecteer a.u.b. Ok als u toch wilt doorgaan met deze aanvraag.

Gekoppelde data


Primary Entity

<http://www.worldcat.org/oclc/213400529> # Orthogonal polynomials and continued fractions : from Euler's point of view
    a schema:Book, schema:CreativeWork ;
   library:oclcnum "213400529" ;
   library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/131364506#Place/cambridge> ; # Cambridge
   library:placeOfPublication <http://id.loc.gov/vocabulary/countries/enk> ;
   schema:about <http://id.worldcat.org/fast/1048521> ; # Orthogonal polynomials
   schema:about <http://dewey.info/class/515.55/e22/> ;
   schema:about <http://viaf.org/viaf/24639786> ; # Leonhard Euler
   schema:about <http://id.worldcat.org/fast/876703> ; # Continued fractions
   schema:about <http://experiment.worldcat.org/entity/work/data/131364506#Person/euler_leonhard_1707_1783> ; # Leonhard Euler
   schema:about <http://experiment.worldcat.org/entity/work/data/131364506#Topic/speciella_funktioner> ; # Speciella funktioner
   schema:bookFormat bgn:PrintBook ;
   schema:creator <http://experiment.worldcat.org/entity/work/data/131364506#Person/khrushchev_s_v> ; # S. V. Khrushchev
   schema:datePublished "2008" ;
   schema:description "Continued fractions: real numbers -- Continued fractions: algebra -- Continued fractions: analysis -- Continued fractions: Euler -- Continued fractions: Euler's influence -- P-fractions -- Orthogonal polynomials -- Orthogonal polynomials on the unit circle -- Appendix. Continued fractions, observations L. Euler (1739)."@en ;
   schema:description ""This new and exciting historical book tells how Euler introduced the idea of orthogonal polynomials and how he combined them with continued fractions, as well as how Brouncker's formula of 1655 can be derived from Euler's efforts in Special Functions and Orthogonal Polynomials. The most interesting applications of this work are discussed, including the great Markoff's Theorem on the Lagrange spectrum, Abel's Theorem on integration in finite terms, Chebyshev's Theory of Orthogonal Polynomials, and very recent advances in Orthogonal Polynomials on the unit circle. As continued fractions become more important again, in part due to their use in finding algorithms in approximation theory, this timely book revives the approach of Wallis, Brouncker and Euler and illustrates the continuing significance of their influence. A translation of Euler's famous paper 'Continued Fractions, Observation' is included as an Addendum."--Publisher's description."@en ;
   schema:exampleOfWork <http://worldcat.org/entity/work/id/131364506> ;
   schema:inLanguage "en" ;
   schema:isPartOf <http://experiment.worldcat.org/entity/work/data/131364506#Series/encyclopedia_of_mathematics_and_its_applications> ; # Encyclopedia of mathematics and its applications ;
   schema:name "Orthogonal polynomials and continued fractions : from Euler's point of view"@en ;
   schema:productID "213400529" ;
   schema:publication <http://www.worldcat.org/title/-/oclc/213400529#PublicationEvent/cambridge_cambridge_university_press_2008> ;
   schema:publisher <http://experiment.worldcat.org/entity/work/data/131364506#Agent/cambridge_university_press> ; # Cambridge University Press
   schema:workExample <http://worldcat.org/isbn/9780521854191> ;
   umbel:isLike <http://bnb.data.bl.uk/id/resource/GBA863671> ;
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/213400529> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/131364506#Agent/cambridge_university_press> # Cambridge University Press
    a bgn:Agent ;
   schema:name "Cambridge University Press" ;
    .

<http://experiment.worldcat.org/entity/work/data/131364506#Person/euler_leonhard_1707_1783> # Leonhard Euler
    a schema:Person ;
   schema:birthDate "1707" ;
   schema:deathDate "1783" ;
   schema:familyName "Euler" ;
   schema:givenName "Leonhard" ;
   schema:name "Leonhard Euler" ;
    .

<http://experiment.worldcat.org/entity/work/data/131364506#Person/khrushchev_s_v> # S. V. Khrushchev
    a schema:Person ;
   schema:familyName "Khrushchev" ;
   schema:givenName "S. V." ;
   schema:name "S. V. Khrushchev" ;
    .

<http://experiment.worldcat.org/entity/work/data/131364506#Series/encyclopedia_of_mathematics_and_its_applications> # Encyclopedia of mathematics and its applications ;
    a bgn:PublicationSeries ;
   schema:hasPart <http://www.worldcat.org/oclc/213400529> ; # Orthogonal polynomials and continued fractions : from Euler's point of view
   schema:name "Encyclopedia of mathematics and its applications ;" ;
    .

<http://experiment.worldcat.org/entity/work/data/131364506#Topic/speciella_funktioner> # Speciella funktioner
    a schema:Intangible ;
   schema:name "Speciella funktioner"@en ;
    .

<http://id.worldcat.org/fast/1048521> # Orthogonal polynomials
    a schema:Intangible ;
   schema:name "Orthogonal polynomials"@en ;
    .

<http://id.worldcat.org/fast/876703> # Continued fractions
    a schema:Intangible ;
   schema:name "Continued fractions"@en ;
    .

<http://viaf.org/viaf/24639786> # Leonhard Euler
    a schema:Person ;
   schema:birthDate "1707" ;
   schema:deathDate "1783" ;
   schema:familyName "Euler" ;
   schema:givenName "Leonhard" ;
   schema:name "Leonhard Euler" ;
    .

<http://worldcat.org/isbn/9780521854191>
    a schema:ProductModel ;
   schema:isbn "0521854199" ;
   schema:isbn "9780521854191" ;
    .


Content-negotiable representations

Venster sluiten

Meld u aan bij WorldCat 

Heeft u geen account? U kunt eenvoudig een nieuwe gratis account aanmaken.