skip to content
Partial orders and the axiomatic theory of shuffle Preview this item
ClosePreview this item
Checking...

Partial orders and the axiomatic theory of shuffle

Author: Jay Loren Gischer; Stanford University. Computer Science Department.
Publisher: Stanford : Department of Computer Science, Stanford University, 1984.
Series: STAN-CS-, 84-1033.
Edition/Format:   Print book : EnglishView all editions and formats
Database:WorldCat
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Document Type: Book
All Authors / Contributors: Jay Loren Gischer; Stanford University. Computer Science Department.
OCLC Number: 606072492
Series Title: STAN-CS-, 84-1033.
Responsibility: by Jay Loren Gischer.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/606072492> # Partial orders and the axiomatic theory of shuffle
    a schema:CreativeWork, schema:Book ;
   library:oclcnum "606072492" ;
   library:placeOfPublication <http://id.loc.gov/vocabulary/countries/cau> ;
   library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/10543505#Place/stanford> ; # Stanford
   schema:about <http://id.worldcat.org/fast/932922> ; # Formal languages
   schema:about <http://id.worldcat.org/fast/1052928> ; # Parallel processing (Electronic computers)
   schema:bookFormat bgn:PrintBook ;
   schema:contributor <http://viaf.org/viaf/152491517> ; # Stanford University. Computer Science Department.
   schema:creator <http://experiment.worldcat.org/entity/work/data/10543505#Person/gischer_jay_loren> ; # Jay Loren Gischer
   schema:datePublished "1984" ;
   schema:exampleOfWork <http://worldcat.org/entity/work/id/10543505> ;
   schema:inLanguage "en" ;
   schema:isPartOf <http://experiment.worldcat.org/entity/work/data/10543505#Series/stan_cs> ; # STAN-CS- ;
   schema:name "Partial orders and the axiomatic theory of shuffle"@en ;
   schema:productID "606072492" ;
   schema:publication <http://www.worldcat.org/title/-/oclc/606072492#PublicationEvent/stanford_department_of_computer_science_stanford_university_1984> ;
   schema:publisher <http://experiment.worldcat.org/entity/work/data/10543505#Agent/department_of_computer_science_stanford_university> ; # Department of Computer Science, Stanford University
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/606072492> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/10543505#Agent/department_of_computer_science_stanford_university> # Department of Computer Science, Stanford University
    a bgn:Agent ;
   schema:name "Department of Computer Science, Stanford University" ;
    .

<http://experiment.worldcat.org/entity/work/data/10543505#Person/gischer_jay_loren> # Jay Loren Gischer
    a schema:Person ;
   schema:familyName "Gischer" ;
   schema:givenName "Jay Loren" ;
   schema:name "Jay Loren Gischer" ;
    .

<http://experiment.worldcat.org/entity/work/data/10543505#Series/stan_cs> # STAN-CS- ;
    a bgn:PublicationSeries ;
   schema:hasPart <http://www.worldcat.org/oclc/606072492> ; # Partial orders and the axiomatic theory of shuffle
   schema:name "STAN-CS- ;" ;
    .

<http://id.worldcat.org/fast/1052928> # Parallel processing (Electronic computers)
    a schema:Intangible ;
   schema:name "Parallel processing (Electronic computers)"@en ;
    .

<http://id.worldcat.org/fast/932922> # Formal languages
    a schema:Intangible ;
   schema:name "Formal languages"@en ;
    .

<http://viaf.org/viaf/152491517> # Stanford University. Computer Science Department.
    a schema:Organization ;
   schema:name "Stanford University. Computer Science Department." ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.