skip to content
Pattern recognition and machine learning Preview this item
ClosePreview this item
Checking...

Pattern recognition and machine learning

Author: Christopher M Bishop
Publisher: New York : Springer, ©2006.
Series: Information science and statistics.
Edition/Format:   Print book : EnglishView all editions and formats
Summary:
The field of pattern recognition has undergone substantial development over the years. This book reflects these developments while providing a grounding in the basic concepts of pattern recognition and machine learning. It is aimed at advanced undergraduates or first year PhD students, as well as researchers and practitioners.
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Manuels d'enseignement supérieur
Problèmes et exercices
Material Type: Internet resource
Document Type: Book, Internet Resource
All Authors / Contributors: Christopher M Bishop
ISBN: 0387310738 9780387310732
OCLC Number: 71008143
Notes: Textbook for graduates.
Description: xx, 738 pages : illustrations (chiefly color) ; 24 cm.
Contents: Introduction. Example : polynomial curve fitting ; Probability theory ; Model selection ; The curse of dimensionality Decision theory ; Information theory --
Probability distributions. Binary vehicles ; Multinomial variables ; The Gaussian distribution ; The exponential family ; Nonparametric methods --
Linear models for regression. Linear basis function models ; The bias-variance decomposition ; Bayesian linear regression ; Bayesian model comparison ; The evidence approximation ; Limitations of fixed basis functions --
Linear models for classification. Discriminant functions ; Probabilistic generative models ; Probabilistic discrimitive models ; The Laplace approximation ; Bayesian logistic regression --
Neural networks. Feed-forward network functions ; Network training ; Error backpropagation ; The Hessian matrix ; Regularization in neural networks ; Mixture density networks ; Bayesian neural networks --
Kernel methods. Dual representations ; Constructing kernals ; Radial basis function networks ; Gaussian processes --
Sparse Kernel machines. Maximum margin classifiers ; Relevance vector machines --
Graphical models. Bayesian networks ; Conditional independence ; Markov random fields ; Inference in graphical models --
Mixture models and EM. K-means clustering ; Mixtures of Gaussians ; An alternative view of EM ; The EM algorithm in general --
Approximate inference. Variational inference ; Illustration : variational mixture of Gaussians ; Variational linear regression ; Exponential family distributions ; Local variational methods ; Variational logistic regression ; Expectation propagation --
Sampling methods. Basic sampling algorithms ; Markov chain Monte Carlo ; Gibbs sampling ; Slice sampling ; The hybrid Monte Carlo algorithm ; Estimating the partition function --
Continuous latent variables. Principal component analysis ; Probabilistic PCA ; Kernel PCA ; Nonlinear latent variable models --
Sequential data. Markoc models ; Hidden Markov models ; Linear dynamical systems --
Combining models. Bayesian model averaging ; Committees ; Boosting ; Tree-based models ; Conditional mixture models --
Data sets --
Probability distributions --
Properties of matrices --
Calculus of variations --
Lagrange multipliers.
Series Title: Information science and statistics.
Responsibility: Christopher M. Bishop.
More information:

Abstract:

This is the first textbook on pattern recognition to present the Bayesian viewpoint. It presents approximate inference algorithms that permit fast approximate answers in situations where exact  Read more...

Reviews

Editorial reviews

Publisher Synopsis

From the reviews:"This beautifully produced book is intended for advanced undergraduates, PhD students, and researchers and practitioners, primarily in the machine learning or allied areas...A strong Read more...

 
User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

All user tags (1)

View most popular tags as: tag list | tag cloud

  • CE  (by 1 person)
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/71008143> # Pattern recognition and machine learning
    a schema:CreativeWork, schema:Book ;
   library:oclcnum "71008143" ;
   library:placeOfPublication <http://id.loc.gov/vocabulary/countries/nyu> ;
   library:placeOfPublication <http://dbpedia.org/resource/New_York_City> ; # New York
   schema:about <http://experiment.worldcat.org/entity/work/data/57999184#Topic/statistique_mathematique> ; # Statistique mathématique
   schema:about <http://id.worldcat.org/fast/1055254> ; # Pattern perception
   schema:about <http://experiment.worldcat.org/entity/work/data/57999184#Topic/aprendizaje_automatico_inteligencia_artificial> ; # Aprendizaje automático (Inteligencia artificial)
   schema:about <http://experiment.worldcat.org/entity/work/data/57999184#Topic/aprendizado_computacional> ; # Aprendizado computacional
   schema:about <http://experiment.worldcat.org/entity/work/data/57999184#Topic/patroonherkenning> ; # Patroonherkenning
   schema:about <http://experiment.worldcat.org/entity/work/data/57999184#Topic/reconocimiento_de_modelos> ; # Reconocimiento de modelos
   schema:about <http://experiment.worldcat.org/entity/work/data/57999184#Topic/redes_neurais> ; # Redes neurais
   schema:about <http://experiment.worldcat.org/entity/work/data/57999184#Topic/mustererkennung> ; # Mustererkennung
   schema:about <http://id.worldcat.org/fast/1055266> ; # Pattern recognition systems
   schema:about <http://experiment.worldcat.org/entity/work/data/57999184#Topic/maschinelles_lernen> ; # Maschinelles Lernen
   schema:about <http://experiment.worldcat.org/entity/work/data/57999184#Topic/apprentissage_automatique> ; # Apprentissage automatique
   schema:about <http://id.worldcat.org/fast/1004795> ; # Machine learning
   schema:about <http://experiment.worldcat.org/entity/work/data/57999184#Topic/machine_learning> ; # Machine-learning
   schema:about <http://dewey.info/class/006.4/e22/> ;
   schema:about <http://experiment.worldcat.org/entity/work/data/57999184#Topic/reconhecimento_de_padroes> ; # Reconhecimento de padrões
   schema:about <http://experiment.worldcat.org/entity/work/data/57999184#Topic/reconnaissance_des_formes_informatique> ; # Reconnaissance des formes (Informatique)
   schema:bookFormat bgn:PrintBook ;
   schema:copyrightYear "2006" ;
   schema:creator <http://viaf.org/viaf/233034137> ; # Christopher M. Bishop
   schema:datePublished "2006" ;
   schema:description "Introduction. Example : polynomial curve fitting ; Probability theory ; Model selection ; The curse of dimensionality Decision theory ; Information theory -- Probability distributions. Binary vehicles ; Multinomial variables ; The Gaussian distribution ; The exponential family ; Nonparametric methods -- Linear models for regression. Linear basis function models ; The bias-variance decomposition ; Bayesian linear regression ; Bayesian model comparison ; The evidence approximation ; Limitations of fixed basis functions -- Linear models for classification. Discriminant functions ; Probabilistic generative models ; Probabilistic discrimitive models ; The Laplace approximation ; Bayesian logistic regression -- Neural networks. Feed-forward network functions ; Network training ; Error backpropagation ; The Hessian matrix ; Regularization in neural networks ; Mixture density networks ; Bayesian neural networks -- Kernel methods. Dual representations ; Constructing kernals ; Radial basis function networks ; Gaussian processes -- Sparse Kernel machines. Maximum margin classifiers ; Relevance vector machines -- Graphical models. Bayesian networks ; Conditional independence ; Markov random fields ; Inference in graphical models -- Mixture models and EM. K-means clustering ; Mixtures of Gaussians ; An alternative view of EM ; The EM algorithm in general -- Approximate inference. Variational inference ; Illustration : variational mixture of Gaussians ; Variational linear regression ; Exponential family distributions ; Local variational methods ; Variational logistic regression ; Expectation propagation -- Sampling methods. Basic sampling algorithms ; Markov chain Monte Carlo ; Gibbs sampling ; Slice sampling ; The hybrid Monte Carlo algorithm ; Estimating the partition function -- Continuous latent variables. Principal component analysis ; Probabilistic PCA ; Kernel PCA ; Nonlinear latent variable models -- Sequential data. Markoc models ; Hidden Markov models ; Linear dynamical systems -- Combining models. Bayesian model averaging ; Committees ; Boosting ; Tree-based models ; Conditional mixture models -- Data sets -- Probability distributions -- Properties of matrices -- Calculus of variations -- Lagrange multipliers."@en ;
   schema:description "The field of pattern recognition has undergone substantial development over the years. This book reflects these developments while providing a grounding in the basic concepts of pattern recognition and machine learning. It is aimed at advanced undergraduates or first year PhD students, as well as researchers and practitioners."@en ;
   schema:exampleOfWork <http://worldcat.org/entity/work/id/57999184> ;
   schema:inLanguage "en" ;
   schema:isPartOf <http://experiment.worldcat.org/entity/work/data/57999184#Series/information_science_and_statistics> ; # Information science and statistics.
   schema:name "Pattern recognition and machine learning"@en ;
   schema:productID "71008143" ;
   schema:publication <http://www.worldcat.org/title/-/oclc/71008143#PublicationEvent/new_york_springer_2006> ;
   schema:publisher <http://experiment.worldcat.org/entity/work/data/57999184#Agent/springer> ; # Springer
   schema:url <http://swbplus.bsz-bw.de/bsz250316129inh.htm> ;
   schema:url <http://digitool.hbz-nrw.de:1801/webclient/DeliveryManager?pid=3283721&custom_att_2=simple_viewer> ;
   schema:url <http://swbplus.bsz-bw.de/bsz28047668xinh.htm> ;
   schema:url <http://www.ulb.tu-darmstadt.de/tocs/198320841.pdf> ;
   schema:url <http://catdir.loc.gov/catdir/enhancements/fy0818/2006922522-t.html> ;
   schema:workExample <http://worldcat.org/isbn/9780387310732> ;
   umbel:isLike <http://d-nb.info/977347575> ;
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/71008143> ;
    .


Related Entities

<http://dbpedia.org/resource/New_York_City> # New York
    a schema:Place ;
   schema:name "New York" ;
    .

<http://experiment.worldcat.org/entity/work/data/57999184#Series/information_science_and_statistics> # Information science and statistics.
    a bgn:PublicationSeries ;
   schema:hasPart <http://www.worldcat.org/oclc/71008143> ; # Pattern recognition and machine learning
   schema:name "Information science and statistics." ;
   schema:name "Information science and statistics" ;
    .

<http://experiment.worldcat.org/entity/work/data/57999184#Topic/apprentissage_automatique> # Apprentissage automatique
    a schema:Intangible ;
   schema:name "Apprentissage automatique"@fr ;
    .

<http://experiment.worldcat.org/entity/work/data/57999184#Topic/aprendizado_computacional> # Aprendizado computacional
    a schema:Intangible ;
   schema:name "Aprendizado computacional"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/57999184#Topic/aprendizaje_automatico_inteligencia_artificial> # Aprendizaje automático (Inteligencia artificial)
    a schema:Intangible ;
   schema:name "Aprendizaje automático (Inteligencia artificial)"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/57999184#Topic/maschinelles_lernen> # Maschinelles Lernen
    a schema:Intangible ;
   schema:name "Maschinelles Lernen"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/57999184#Topic/reconhecimento_de_padroes> # Reconhecimento de padrões
    a schema:Intangible ;
   schema:name "Reconhecimento de padrões"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/57999184#Topic/reconnaissance_des_formes_informatique> # Reconnaissance des formes (Informatique)
    a schema:Intangible ;
   schema:name "Reconnaissance des formes (Informatique)"@fr ;
    .

<http://experiment.worldcat.org/entity/work/data/57999184#Topic/reconocimiento_de_modelos> # Reconocimiento de modelos
    a schema:Intangible ;
   schema:name "Reconocimiento de modelos"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/57999184#Topic/statistique_mathematique> # Statistique mathématique
    a schema:Intangible ;
   schema:name "Statistique mathématique"@fr ;
    .

<http://id.worldcat.org/fast/1004795> # Machine learning
    a schema:Intangible ;
   schema:name "Machine learning"@en ;
    .

<http://id.worldcat.org/fast/1055254> # Pattern perception
    a schema:Intangible ;
   schema:name "Pattern perception"@en ;
    .

<http://id.worldcat.org/fast/1055266> # Pattern recognition systems
    a schema:Intangible ;
   schema:name "Pattern recognition systems"@en ;
    .

<http://viaf.org/viaf/233034137> # Christopher M. Bishop
    a schema:Person ;
   schema:familyName "Bishop" ;
   schema:givenName "Christopher M." ;
   schema:name "Christopher M. Bishop" ;
    .

<http://worldcat.org/isbn/9780387310732>
    a schema:ProductModel ;
   schema:isbn "0387310738" ;
   schema:isbn "9780387310732" ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.