zum Inhalt wechseln
Perturbed Brownian motions
SchließenTitelvorschau
Prüfung…

Perturbed Brownian motions

Verfasser/in: Mihael Perman; Wendelin Werner
Ausgabe/Format   Artikel : Englisch
Veröffentichung:Probability theory and related fields, št. 3, Let. 108 (1997), str. 357-383
Datenbank:WorldCat
Zusammenfassung:
Članek obravnava stohastični proces, ki ga dobimo, če standardno Brownovo gibanje perturbiramo, ko doseže maksimum ali minimum, in sicer tako, da v tistem trenutku dodamo dušenje, ki Brownovo gibanje ali potiska od izhodišča ali proti izhodišču. Najprej je dokazana eksistenca takega procesa, potem pa so obravnavane njegove lastnosti. Nazadnje obravnavamo še lastnosti trajektorij perturbiranega Brownovega
Bewertung:

(noch nicht bewertet) 0 mit Rezensionen - Verfassen Sie als Erste eine Rezension.

Themen
Ähnliche Titel

 

&AllPage.SpinnerRetrieving;

Exemplar ausleihen

&AllPage.SpinnerRetrieving; Suche nach Bibliotheken, die diesen Titel besitzen ...

Details

Dokumenttyp: Aufsatz
Alle Autoren: Mihael Perman; Wendelin Werner
ISSN:0178-8051
OCLC-Nummer: 438457956
Beschreibung: str. 357-383.
Verfasserangabe: Mihael Perman, Wendelin Werner.

Abstract:

Članek obravnava stohastični proces, ki ga dobimo, če standardno Brownovo gibanje perturbiramo, ko doseže maksimum ali minimum, in sicer tako, da v tistem trenutku dodamo dušenje, ki Brownovo gibanje ali potiska od izhodišča ali proti izhodišču. Najprej je dokazana eksistenca takega procesa, potem pa so obravnavane njegove lastnosti. Nazadnje obravnavamo še lastnosti trajektorij perturbiranega Brownovega gibanja npr. Hausdorffova dimenzija točk mnogoterosti.

We study "perturbed Brownian motions", that can be, loosely speaking, describes as follows: they behave exactly as linear Brownian motion except they hit their maximum or minimum where they get an extra "push". We define with no restrictions on the perturbation parameters a process which has this property and show that its law is unique within a certain "natural class" of processes. In the case where both perturbations (at the maximum and at the minimum) are self-repelling, we show that in fact, moer is true: Such a process can almost surely be constructed from Brownian paths by a one-to-one measurable transformation. This generalizes some results of Carmona-Petit-Yor and Davis. We also derive some fine properties of perturbed Brownian motions (Hausdorff dimension of points of monotonicity for example).

Rezensionen

Nutzer-Rezensionen
Suche nach GoodReads-Rezensionen
Suche nach DOGObooks-Rezensionen…

Tags

Tragen Sie als Erste Tags ein.
Anfrage bestätigen

Sie haben diesen Titel bereits angefordert. Wenn Sie trotzdem fortfahren möchten, klicken Sie auf OK.

Verlinkung


<http://www.worldcat.org/oclc/438457956>
library:oclcnum"438457956"
library:placeOfPublication
rdf:typeschema:Article
schema:about
schema:about
schema:author
schema:author
schema:datePublished"1997"
schema:description"Članek obravnava stohastični proces, ki ga dobimo, če standardno Brownovo gibanje perturbiramo, ko doseže maksimum ali minimum, in sicer tako, da v tistem trenutku dodamo dušenje, ki Brownovo gibanje ali potiska od izhodišča ali proti izhodišču. Najprej je dokazana eksistenca takega procesa, potem pa so obravnavane njegove lastnosti. Nazadnje obravnavamo še lastnosti trajektorij perturbiranega Brownovega gibanja npr. Hausdorffova dimenzija točk mnogoterosti."
schema:description"We study "perturbed Brownian motions", that can be, loosely speaking, describes as follows: they behave exactly as linear Brownian motion except they hit their maximum or minimum where they get an extra "push". We define with no restrictions on the perturbation parameters a process which has this property and show that its law is unique within a certain "natural class" of processes. In the case where both perturbations (at the maximum and at the minimum) are self-repelling, we show that in fact, moer is true: Such a process can almost surely be constructed from Brownian paths by a one-to-one measurable transformation. This generalizes some results of Carmona-Petit-Yor and Davis. We also derive some fine properties of perturbed Brownian motions (Hausdorff dimension of points of monotonicity for example)."
schema:exampleOfWork<http://worldcat.org/entity/work/id/324353302>
schema:inLanguage"en"
schema:isPartOf
<http://worldcat.org/issn/0178-8051>
rdf:typeschema:Periodical
rdfs:label"Probability theory and related fields"
schema:description"Berlin ; Heidelberg ; New York ; Tokyo : Springer, 1986-"
schema:issn"0178-8051"
schema:name"Perturbed Brownian motions"
schema:pagination"št. 3, Let. 108 (1997), str. 357-383"
wdrs:describedby

Content-negotiable representations

Fenster schließen

Bitte in WorldCat einloggen 

Sie haben kein Konto? Sie können sehr einfach ein kostenloses Konto anlegen,.