omitir hasta el contenido
Perturbed Brownian motions
CerrarVer este material de antemano
Chequeando…

Perturbed Brownian motions

Autor: Mihael Perman; Wendelin Werner
Edición/Formato:   Artículo : Inglés (eng)
Publicación:Probability theory and related fields, št. 3, Let. 108 (1997), str. 357-383
Base de datos:WorldCat
Resumen:
Članek obravnava stohastični proces, ki ga dobimo, če standardno Brownovo gibanje perturbiramo, ko doseže maksimum ali minimum, in sicer tako, da v tistem trenutku dodamo dušenje, ki Brownovo gibanje ali potiska od izhodišča ali proti izhodišču. Najprej je dokazana eksistenca takega procesa, potem pa so obravnavane njegove lastnosti. Nazadnje obravnavamo še lastnosti trajektorij perturbiranega Brownovega
Calificación:

(todavía no calificado) 0 con reseñas - Ser el primero.

Temas
Más materiales como éste

 

&AllPage.SpinnerRetrieving;

Encontrar un ejemplar en la biblioteca

&AllPage.SpinnerRetrieving; Encontrando bibliotecas que tienen este material…

Detalles

Tipo de documento: Artículo
Todos autores / colaboradores: Mihael Perman; Wendelin Werner
ISSN:0178-8051
Número OCLC: 438457956
Descripción: str. 357-383.
Responsabilidad: Mihael Perman, Wendelin Werner.

Resumen:

Članek obravnava stohastični proces, ki ga dobimo, če standardno Brownovo gibanje perturbiramo, ko doseže maksimum ali minimum, in sicer tako, da v tistem trenutku dodamo dušenje, ki Brownovo gibanje ali potiska od izhodišča ali proti izhodišču. Najprej je dokazana eksistenca takega procesa, potem pa so obravnavane njegove lastnosti. Nazadnje obravnavamo še lastnosti trajektorij perturbiranega Brownovega gibanja npr. Hausdorffova dimenzija točk mnogoterosti.

We study "perturbed Brownian motions", that can be, loosely speaking, describes as follows: they behave exactly as linear Brownian motion except they hit their maximum or minimum where they get an extra "push". We define with no restrictions on the perturbation parameters a process which has this property and show that its law is unique within a certain "natural class" of processes. In the case where both perturbations (at the maximum and at the minimum) are self-repelling, we show that in fact, moer is true: Such a process can almost surely be constructed from Brownian paths by a one-to-one measurable transformation. This generalizes some results of Carmona-Petit-Yor and Davis. We also derive some fine properties of perturbed Brownian motions (Hausdorff dimension of points of monotonicity for example).

Reseñas

Reseñas contribuidas por usuarios
Recuperando reseñas de GoodReads…
Recuperando reseñas de DOGObooks…

Etiquetas

Ser el primero.
Confirmar este pedido

Ya ha pedido este material. Escoja OK si desea procesar el pedido de todos modos.

Datos enlazados


<http://www.worldcat.org/oclc/438457956>
library:oclcnum"438457956"
library:placeOfPublication
rdf:typeschema:Article
schema:about
schema:about
schema:author
schema:author
schema:datePublished"1997"
schema:description"Članek obravnava stohastični proces, ki ga dobimo, če standardno Brownovo gibanje perturbiramo, ko doseže maksimum ali minimum, in sicer tako, da v tistem trenutku dodamo dušenje, ki Brownovo gibanje ali potiska od izhodišča ali proti izhodišču. Najprej je dokazana eksistenca takega procesa, potem pa so obravnavane njegove lastnosti. Nazadnje obravnavamo še lastnosti trajektorij perturbiranega Brownovega gibanja npr. Hausdorffova dimenzija točk mnogoterosti."
schema:description"We study "perturbed Brownian motions", that can be, loosely speaking, describes as follows: they behave exactly as linear Brownian motion except they hit their maximum or minimum where they get an extra "push". We define with no restrictions on the perturbation parameters a process which has this property and show that its law is unique within a certain "natural class" of processes. In the case where both perturbations (at the maximum and at the minimum) are self-repelling, we show that in fact, moer is true: Such a process can almost surely be constructed from Brownian paths by a one-to-one measurable transformation. This generalizes some results of Carmona-Petit-Yor and Davis. We also derive some fine properties of perturbed Brownian motions (Hausdorff dimension of points of monotonicity for example)."
schema:exampleOfWork<http://worldcat.org/entity/work/id/324353302>
schema:inLanguage"en"
schema:isPartOf
<http://worldcat.org/issn/0178-8051>
rdf:typeschema:Periodical
rdfs:label"Probability theory and related fields"
schema:description"Berlin ; Heidelberg ; New York ; Tokyo : Springer, 1986-"
schema:issn"0178-8051"
schema:name"Perturbed Brownian motions"
schema:pagination"št. 3, Let. 108 (1997), str. 357-383"
wdrs:describedby

Content-negotiable representations

Cerrar ventana

Inicie una sesión con WorldCat 

¿No tienes una cuenta? Puede fácilmente crear una cuenta gratuita.