aller au contenu
Perturbed Brownian motions
FermerAperçu de cet ouvrage
Vérifiant…

Perturbed Brownian motions

Auteur : Mihael Perman; Wendelin Werner
Édition/format :   Article : Anglais
Publication :Probability theory and related fields, št. 3, Let. 108 (1997), str. 357-383
Base de données :WorldCat
Résumé :
Članek obravnava stohastični proces, ki ga dobimo, če standardno Brownovo gibanje perturbiramo, ko doseže maksimum ali minimum, in sicer tako, da v tistem trenutku dodamo dušenje, ki Brownovo gibanje ali potiska od izhodišča ali proti izhodišču. Najprej je dokazana eksistenca takega procesa, potem pa so obravnavane njegove lastnosti. Nazadnje obravnavamo še lastnosti trajektorij perturbiranega Brownovega
Évaluation :

(pas encore évalué) 0 avec des critiques - Soyez le premier.

Sujets
Plus comme ceci

 

&AllPage.SpinnerRetrieving;

Trouver un exemplaire dans la bibliothèque

&AllPage.SpinnerRetrieving; Recherche de bibliothèques qui possèdent cet ouvrage...

Détails

Format : Article
Tous les auteurs / collaborateurs : Mihael Perman; Wendelin Werner
ISSN :0178-8051
Numéro OCLC : 438457956
Description : str. 357-383.
Responsabilité : Mihael Perman, Wendelin Werner.

Résumé :

Članek obravnava stohastični proces, ki ga dobimo, če standardno Brownovo gibanje perturbiramo, ko doseže maksimum ali minimum, in sicer tako, da v tistem trenutku dodamo dušenje, ki Brownovo gibanje ali potiska od izhodišča ali proti izhodišču. Najprej je dokazana eksistenca takega procesa, potem pa so obravnavane njegove lastnosti. Nazadnje obravnavamo še lastnosti trajektorij perturbiranega Brownovega gibanja npr. Hausdorffova dimenzija točk mnogoterosti.

We study "perturbed Brownian motions", that can be, loosely speaking, describes as follows: they behave exactly as linear Brownian motion except they hit their maximum or minimum where they get an extra "push". We define with no restrictions on the perturbation parameters a process which has this property and show that its law is unique within a certain "natural class" of processes. In the case where both perturbations (at the maximum and at the minimum) are self-repelling, we show that in fact, moer is true: Such a process can almost surely be constructed from Brownian paths by a one-to-one measurable transformation. This generalizes some results of Carmona-Petit-Yor and Davis. We also derive some fine properties of perturbed Brownian motions (Hausdorff dimension of points of monotonicity for example).

Critiques

Critiques d’utilisateurs
Récupération des critiques de GoodReads...
Récuperation des critiques DOGObooks…

Tags

Soyez le premier.
Confirmez cette demande

Vous avez peut-être déjà demandé cet ouvrage. Veuillez sélectionner OK si vous voulez poursuivre avec cette demande quand même.

Données liées


<http://www.worldcat.org/oclc/438457956>
library:oclcnum"438457956"
library:placeOfPublication
rdf:typeschema:Article
schema:about
schema:about
schema:author
schema:author
schema:datePublished"1997"
schema:description"Članek obravnava stohastični proces, ki ga dobimo, če standardno Brownovo gibanje perturbiramo, ko doseže maksimum ali minimum, in sicer tako, da v tistem trenutku dodamo dušenje, ki Brownovo gibanje ali potiska od izhodišča ali proti izhodišču. Najprej je dokazana eksistenca takega procesa, potem pa so obravnavane njegove lastnosti. Nazadnje obravnavamo še lastnosti trajektorij perturbiranega Brownovega gibanja npr. Hausdorffova dimenzija točk mnogoterosti."
schema:description"We study "perturbed Brownian motions", that can be, loosely speaking, describes as follows: they behave exactly as linear Brownian motion except they hit their maximum or minimum where they get an extra "push". We define with no restrictions on the perturbation parameters a process which has this property and show that its law is unique within a certain "natural class" of processes. In the case where both perturbations (at the maximum and at the minimum) are self-repelling, we show that in fact, moer is true: Such a process can almost surely be constructed from Brownian paths by a one-to-one measurable transformation. This generalizes some results of Carmona-Petit-Yor and Davis. We also derive some fine properties of perturbed Brownian motions (Hausdorff dimension of points of monotonicity for example)."
schema:exampleOfWork<http://worldcat.org/entity/work/id/324353302>
schema:inLanguage"en"
schema:isPartOf
<http://worldcat.org/issn/0178-8051>
rdf:typeschema:Periodical
rdfs:label"Probability theory and related fields"
schema:description"Berlin ; Heidelberg ; New York ; Tokyo : Springer, 1986-"
schema:issn"0178-8051"
schema:name"Perturbed Brownian motions"
schema:pagination"št. 3, Let. 108 (1997), str. 357-383"
wdrs:describedby

Content-negotiable representations

Fermer la fenêtre

Veuillez vous identifier dans WorldCat 

Vous n’avez pas de compte? Vous pouvez facilement créer un compte gratuit.