해당 항목을 미리보기
확인중입니다…

# Perturbed Brownian motions

저자: Mihael Perman; Wendelin Werner 문서 : 영어 Probability theory and related fields, št. 3, Let. 108 (1997), str. 357-383 WorldCat Članek obravnava stohastični proces, ki ga dobimo, če standardno Brownovo gibanje perturbiramo, ko doseže maksimum ali minimum, in sicer tako, da v tistem trenutku dodamo dušenje, ki Brownovo gibanje ali potiska od izhodišča ali proti izhodišču. Najprej je dokazana eksistenca takega procesa, potem pa so obravnavane njegove lastnosti. Nazadnje obravnavamo še lastnosti trajektorij perturbiranega Brownovega gibanja npr. Hausdorffova dimenzija točk mnogoterosti.We study "perturbed Brownian motions", that can be, loosely speaking, describes as follows: they behave exactly as linear Brownian motion except they hit their maximum or minimum where they get an extra "push". We define with no restrictions on the perturbation parameters a process which has this property and show that its law is unique within a certain "natural class" of processes. In the case where both perturbations (at the maximum and at the minimum) are self-repelling, we show that in fact, moer is true: Such a process can almost surely be constructed from Brownian paths by a one-to-one measurable transformation. This generalizes some results of Carmona-Petit-Yor and Davis. We also derive some fine properties of perturbed Brownian motions (Hausdorff dimension of points of monotonicity for example).  더 읽기… (아무런 평가가 없습니다.) 0 리뷰와 함께 - 첫번째로 올려주세요. 이 출판물에 다음과 같은 단어가 포함된 다른 기사 검색:

## 도서관에서 사본 찾기

해당항목을 보유하고 있는 도서관을 찾는 중

## 상세정보

문서 형식: 아티클 Mihael Perman; Wendelin Werner 다음에 대한 추가 정보 찾기: Mihael Perman Wendelin Werner 0178-8051 438457956 str. 357-383. Mihael Perman, Wendelin Werner.

### 초록:

Članek obravnava stohastični proces, ki ga dobimo, če standardno Brownovo gibanje perturbiramo, ko doseže maksimum ali minimum, in sicer tako, da v tistem trenutku dodamo dušenje, ki Brownovo gibanje ali potiska od izhodišča ali proti izhodišču. Najprej je dokazana eksistenca takega procesa, potem pa so obravnavane njegove lastnosti. Nazadnje obravnavamo še lastnosti trajektorij perturbiranega Brownovega gibanja npr. Hausdorffova dimenzija točk mnogoterosti.

We study "perturbed Brownian motions", that can be, loosely speaking, describes as follows: they behave exactly as linear Brownian motion except they hit their maximum or minimum where they get an extra "push". We define with no restrictions on the perturbation parameters a process which has this property and show that its law is unique within a certain "natural class" of processes. In the case where both perturbations (at the maximum and at the minimum) are self-repelling, we show that in fact, moer is true: Such a process can almost surely be constructed from Brownian paths by a one-to-one measurable transformation. This generalizes some results of Carmona-Petit-Yor and Davis. We also derive some fine properties of perturbed Brownian motions (Hausdorff dimension of points of monotonicity for example).

사용자-기여 리뷰

첫번째 되기

## 유사 항목

요청하신 것을 확인하기

이 항목을 이미 요청하셨을 수도 있습니다. 만약 이 요청을 계속해서 진행하시려면 Ok을 선택하세요.

## 링크된 데이터

### Primary Entity

<http://www.worldcat.org/oclc/438457956> # Perturbed Brownian motions
a schema:Article, schema:CreativeWork ;
library:oclcnum "438457956" ;
library:placeOfPublication <http://id.loc.gov/vocabulary/countries/gw> ;
schema:author <http://experiment.worldcat.org/entity/work/data/324353302#Person/perman_mihael> ; # Mihael Perman
schema:author <http://experiment.worldcat.org/entity/work/data/324353302#Person/werner_wendelin> ; # Wendelin Werner
schema:datePublished "1997" ;
schema:description "Članek obravnava stohastični proces, ki ga dobimo, če standardno Brownovo gibanje perturbiramo, ko doseže maksimum ali minimum, in sicer tako, da v tistem trenutku dodamo dušenje, ki Brownovo gibanje ali potiska od izhodišča ali proti izhodišču. Najprej je dokazana eksistenca takega procesa, potem pa so obravnavane njegove lastnosti. Nazadnje obravnavamo še lastnosti trajektorij perturbiranega Brownovega gibanja npr. Hausdorffova dimenzija točk mnogoterosti." ;
schema:description "We study "perturbed Brownian motions", that can be, loosely speaking, describes as follows: they behave exactly as linear Brownian motion except they hit their maximum or minimum where they get an extra "push". We define with no restrictions on the perturbation parameters a process which has this property and show that its law is unique within a certain "natural class" of processes. In the case where both perturbations (at the maximum and at the minimum) are self-repelling, we show that in fact, moer is true: Such a process can almost surely be constructed from Brownian paths by a one-to-one measurable transformation. This generalizes some results of Carmona-Petit-Yor and Davis. We also derive some fine properties of perturbed Brownian motions (Hausdorff dimension of points of monotonicity for example)." ;
schema:exampleOfWork <http://worldcat.org/entity/work/id/324353302> ;
schema:inLanguage "en" ;
schema:isPartOf <http://worldcat.org/issn/0178-8051> ;
schema:name "Perturbed Brownian motions" ;
schema:pagination "št. 3, Let. 108 (1997), str. 357-383" ;
schema:productID "438457956" ;
wdrs:describedby <http://www.worldcat.org/title/-/oclc/438457956> ;
.

### Related Entities

<http://experiment.worldcat.org/entity/work/data/324353302#Person/perman_mihael> # Mihael Perman
a schema:Person ;
schema:familyName "Perman" ;
schema:givenName "Mihael" ;
schema:name "Mihael Perman" ;
.

<http://experiment.worldcat.org/entity/work/data/324353302#Person/werner_wendelin> # Wendelin Werner
a schema:Person ;
schema:familyName "Werner" ;
schema:givenName "Wendelin" ;
schema:name "Wendelin Werner" ;
.

<http://worldcat.org/issn/0178-8051>
a schema:Periodical ;
rdfs:label "Probability theory and related fields" ;
schema:description "Berlin ; Heidelberg ; New York ; Tokyo : Springer, 1986-" ;
schema:issn "0178-8051" ;
.

Content-negotiable representations

WorldCat에 로그인 하십시오

계정이 없으세요? 아주 간단한 절차를 통하여 무료 계정을 만드실 수 있습니다.