跳到内容
Perturbed Brownian motions
关闭预览资料
正在查...

Perturbed Brownian motions

著者: Mihael Perman; Wendelin Werner
版本/格式:   文章 : 英语
刊登在:Probability theory and related fields, št. 3, Let. 108 (1997), str. 357-383
数据库:WorldCat
提要:
Članek obravnava stohastični proces, ki ga dobimo, če standardno Brownovo gibanje perturbiramo, ko doseže maksimum ali minimum, in sicer tako, da v tistem trenutku dodamo dušenje, ki Brownovo gibanje ali potiska od izhodišča ali proti izhodišču. Najprej je dokazana eksistenca takega procesa, potem pa so obravnavane njegove lastnosti. Nazadnje obravnavamo še lastnosti trajektorij perturbiranega Brownovega
评估:

(尚未评估) 0 附有评论 - 争取成为第一个。

主题
更多类似这样的

 

&AllPage.SpinnerRetrieving;

在图书馆查找

&AllPage.SpinnerRetrieving; 正在查找有这资料的图书馆...

详细书目

文件类型: 文章
所有的著者/提供者: Mihael Perman; Wendelin Werner
ISSN:0178-8051
OCLC号码: 438457956
描述: str. 357-383.
责任: Mihael Perman, Wendelin Werner.

摘要:

Članek obravnava stohastični proces, ki ga dobimo, če standardno Brownovo gibanje perturbiramo, ko doseže maksimum ali minimum, in sicer tako, da v tistem trenutku dodamo dušenje, ki Brownovo gibanje ali potiska od izhodišča ali proti izhodišču. Najprej je dokazana eksistenca takega procesa, potem pa so obravnavane njegove lastnosti. Nazadnje obravnavamo še lastnosti trajektorij perturbiranega Brownovega gibanja npr. Hausdorffova dimenzija točk mnogoterosti.

We study "perturbed Brownian motions", that can be, loosely speaking, describes as follows: they behave exactly as linear Brownian motion except they hit their maximum or minimum where they get an extra "push". We define with no restrictions on the perturbation parameters a process which has this property and show that its law is unique within a certain "natural class" of processes. In the case where both perturbations (at the maximum and at the minimum) are self-repelling, we show that in fact, moer is true: Such a process can almost surely be constructed from Brownian paths by a one-to-one measurable transformation. This generalizes some results of Carmona-Petit-Yor and Davis. We also derive some fine properties of perturbed Brownian motions (Hausdorff dimension of points of monotonicity for example).

评论

用户提供的评论
正在获取GoodReads评论...
正在检索DOGObooks的评论

标签

争取是第一个!
确认申请

你可能已经申请过这份资料。如果还是想申请,请选确认。

链接数据


<http://www.worldcat.org/oclc/438457956>
library:oclcnum"438457956"
library:placeOfPublication
owl:sameAs<info:oclcnum/438457956>
rdf:typeschema:Article
schema:author
schema:author
schema:datePublished"1997"
schema:description"Članek obravnava stohastični proces, ki ga dobimo, če standardno Brownovo gibanje perturbiramo, ko doseže maksimum ali minimum, in sicer tako, da v tistem trenutku dodamo dušenje, ki Brownovo gibanje ali potiska od izhodišča ali proti izhodišču. Najprej je dokazana eksistenca takega procesa, potem pa so obravnavane njegove lastnosti. Nazadnje obravnavamo še lastnosti trajektorij perturbiranega Brownovega gibanja npr. Hausdorffova dimenzija točk mnogoterosti."
schema:description"We study "perturbed Brownian motions", that can be, loosely speaking, describes as follows: they behave exactly as linear Brownian motion except they hit their maximum or minimum where they get an extra "push". We define with no restrictions on the perturbation parameters a process which has this property and show that its law is unique within a certain "natural class" of processes. In the case where both perturbations (at the maximum and at the minimum) are self-repelling, we show that in fact, moer is true: Such a process can almost surely be constructed from Brownian paths by a one-to-one measurable transformation. This generalizes some results of Carmona-Petit-Yor and Davis. We also derive some fine properties of perturbed Brownian motions (Hausdorff dimension of points of monotonicity for example)."
schema:exampleOfWork<http://worldcat.org/entity/work/id/324353302>
schema:inLanguage"en"
schema:name"Perturbed Brownian motions"
schema:url

Content-negotiable representations

关闭窗口

请登入WorldCat 

没有张号吗?很容易就可以 建立免费的账号.