skip to content
Pi, a source book Preview this item
ClosePreview this item
Checking...

Pi, a source book

Author: J L Berggren; Jonathan M Borwein; Peter B Borwein
Publisher: New York : Springer, ©1997.
Edition/Format:   Print book : EnglishView all editions and formats
Summary:
"This book documents the history of pi from the dawn of mathematical time to the present. The story of pi reflects the most seminal, the most serious, and sometimes the most whimsical aspects of mathematics. Much significant mathematics originates with pi, and many great mathematicians have contributed to this story's unfolding." "Mathematicians and historians of mathematics will find this book indispensable.  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Additional Physical Format: Online version:
Pi, a source book.
New York : Springer, ©1997
(OCoLC)625954185
Material Type: Internet resource
Document Type: Book, Internet Resource
All Authors / Contributors: J L Berggren; Jonathan M Borwein; Peter B Borwein
ISBN: 0387949240 9780387949246 3540949240 9783540949244
OCLC Number: 36083554
Language Note: English.
Description: xix, 716 pages : illustrations ; 26 cm
Contents: 1. The Rhind Mathematical Papyrus-Problem 50 (ca. 1650 B.C.) --
2. Engels, Quadrature of the Circles in Ancient Egypt (1977) --
3. Archimedes, Measurement of a Circle (ca. 250 BC) --
4. Phillips. Archimedes the Numerical Analysis (1981) --
5. Lam and Ang. Circle Measurements in Ancient China (1986) --
6. The Banu Musa: The Measurement of Plane and Solid Figures (ca. 850) --
7. Madhava. The Power Series for Arctan and Pi (ca. 1400) --
8. Hope-Jones. Ludolph (or Ludolff or Lucius) van Ceulen (1938) --
9. Viete. Variorum de Rebus Mathematicis Reponsorum Liber VII (1593) --
10. Wallis. Computation of [pi] by Successive Interpolations (1655) --
11. Wallis. Arithmetica Infinitorum (1655) --
12. Huygens. De Circull Magnitudine Inventa (1724) --
13. Gregory. Correspondence with John Collins (1671) --
14. Roy. The Discovery of the Series Formula for [pi] by Leibniz, Gregory, and Nilakantha (1990) --
15. Jones. The First Use of [pi] for the Circle Ratio (1706) --
16. Newton. Of the Method of Fluxious and Infinite Series (1737) --
17. Euler. Chapter 10 of Introduction to Analysis of the Infinite (On the Use of Discovered Fractions to Sum Infinite Series) (1748) --
18. Lambert. Memoire Sur Quelques Proprietes Remarquables Des Quantites Transcendentes Circulaires et Logarithmiques (1761) --
19. Lambert. Irrationality of [pi] (1969) --
20. Shanks. Contributions to Mathematics Comprising Chiefly of the Rectification of the Circle to 607 Places of Decimals (1853) --
21. Hermite. Sur La Fonction Exponentielle (1873) --
22. Lindemann. Ueber die Zahl [pi] (1882) --
23. Weierstrass. Zu Lindemann's Abhandlung "Uber die Ludolphsche Zahl" (1885) --
24. Hilbert. Ueber die Trancendenz der Zahlen e und [pi] (1893) --
25. Goodwin. Quadrature of the Circle (1894) --
26. Edington. House Bill No. 246, Indiana State Legislature, 1897 (1935) --
27. Singmaster. The Legal Values of Pi (1985). 28. Ramanujan. Squaring the Circle (1913) --
29. Ramanujan. Modular Equations and Approximations to [pi] (1914) --
30. Watson. The Marquis and the Land Agent: A Tale of the Eighteenth Century (1933) --
31. Ballantine. The Best (?) Formula for Computing [pi] to a Thousand Places (1939) --
32. Birch. An Algorithm for Construction of Arctangent Relations (1946) --
33. Niven. A Simple Proof that [pi] Is Irrational (1947) --
34. Reitwiesner. An ENIAC Determination of [pi] and e to 2000 Decimal Places (1950) --
35. Schepler. The Chronology of Pi (1950) --
36. Mahler. On the Approximation of [pi] (1953) --
37. Wrench, Jr. The Evolution of Extended Decimal Approximations to [pi] (1960) --
38. Shanks and Wrench, Jr. Calculation of [pi] to 100,000 Decimals (1962) --
39. Sweeny. On the Computation of Euler's Constant (1963) --
40. Baker. Approximation to the Logarithms of Certain Rational Numbers (1964) --
41. Adams. Asymptotic Diophantine Approximations to E (1966) --
42. Mahler. Applications of Some Formulae by Hermite to the Approximations of Exponentials of Logarithms (1967) --
43. Eves. In Mathematical Circles; A Selection of Mathematical Stories and Anecdotes (excerpt) (1969) --
44. Eves. Mathematical Circles Revisited; A Second Collection of Mathematical Stories and Anecdotes (excerpt) (1971) --
45. Todd. The Lemniscate Constants (1975) --
46. Salamin. Computation of [pi] using Arithmetic-Geometric Mean (1976) --
47. Brent. Fast Multiple-Precision Evaluation of Elementary Functions (1976) --
48. Beukers. A Note on the Irrationality of [zeta](2) and [zeta](3) (1979) --
49. van der Poorten. A Proof that Euler Missed ... Apery's Proof of the Irrationality of [zeta](3) (1979) --
50. Brent and McMillan. Some New Algorithms for High-Precision Computation of Euler's Constant (1980) --
51. Apostol. A Proof that Euler Missed: Evaluating [zeta](2) the Easy Way (1983). 52. O'Shaughnessy. Putting God Back in Math (1983) --
53. Stern. A Remarkable Approximation to [pi] (1985) --
54. Newman and Shanks. On a Sequence Arising in Series for [pi] (1984) --
55. Cox. The Arithmetic-Geometric Mean of Gauss (1984) --
56. Borwein and Borwein. The Arithmetic-Geometric Mean and Fast Computation of Elementary Functions (1984) --
57. Newmann. A Simplified Version of the Fast Algorithms of Brent and Salamin (1984) --
58. Wagon. Is Pi Normal? (1985) --
59. Keith. Circle Digits: A Self-Referential Story (1986) --
60. Bailey. The Computation of [pi] to 29,360,000 Decimal Digits Using Borweins' Quartically Convergent Algorithm (1988) --
61. Kanada. Vectorization of Multiple-Precision Arithmetic Program and 201,326,000 Decimal Digits of [pi] Calculation (1988) --
62. Borwein and Borwein. Ramanujan and Pi (1988) --
63. Chudnovsky and Chudnovsky. Approximation and Complex Multiplication According to Ramanujan (1988) --
64. Borwein, Borwein and Bailey. Ramanujan, Modular Equations, and Approximations to Pi or How to Compute One Billion Digits of Pi (1989) --
65. Borwein, Borwein and Dilcher. Pi, Euler Numbers, and Asymptotic Expansions (1989) --
66. Beukers, Bezivin, and Robba. An Alternative Proof of the Lindemann-Weierstrass Theorem (1990) --
67. Webster. The Tail of Pi (1991) --
68. Eco. An excerpt from Foucault's Pendulum (1993) --
69. Keith. Pi Mnemonics and the Art of Constrained Writing (1996) --
70. Bailey, Borwein, and Plouffe. On the Rapid Computation of Various Polylogarithmic Constants (1996) --
App. I. On the Early History of Pi --
App. II. A Computational Chronology of Pi --
App. III. Selected Formulae for Pi.
Responsibility: [edited by] Lennart Berggren, Jonathan Borwein, Peter Borwein.

Abstract:

"This book documents the history of pi from the dawn of mathematical time to the present. The story of pi reflects the most seminal, the most serious, and sometimes the most whimsical aspects of mathematics. Much significant mathematics originates with pi, and many great mathematicians have contributed to this story's unfolding." "Mathematicians and historians of mathematics will find this book indispensable. Teachers at every level can find here ample resources for anything from individual talks and student projects to special topics courses."--Jacket.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.

Similar Items

Related Subjects:(3)

User lists with this item (2)

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/36083554> # Pi, a source book
    a schema:CreativeWork, schema:Book ;
    library:oclcnum "36083554" ;
    library:placeOfPublication <http://dbpedia.org/resource/New_York_City> ; # New York
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/nyu> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/1405460714#Topic/pi_le_nombre> ; # Pi (le nombre)
    schema:about <http://id.worldcat.org/fast/1063334> ; # Pi
    schema:about <http://dewey.info/class/516.22/e21/> ;
    schema:bookFormat bgn:PrintBook ;
    schema:contributor <http://experiment.worldcat.org/entity/work/data/1405460714#Person/berggren_j_l> ; # J. L. Berggren
    schema:contributor <http://viaf.org/viaf/17287732> ; # Jonathan M. Borwein
    schema:contributor <http://experiment.worldcat.org/entity/work/data/1405460714#Person/borwein_peter_b> ; # Peter B. Borwein
    schema:copyrightYear "1997" ;
    schema:datePublished "1997" ;
    schema:description "1. The Rhind Mathematical Papyrus-Problem 50 (ca. 1650 B.C.) -- 2. Engels, Quadrature of the Circles in Ancient Egypt (1977) -- 3. Archimedes, Measurement of a Circle (ca. 250 BC) -- 4. Phillips. Archimedes the Numerical Analysis (1981) -- 5. Lam and Ang. Circle Measurements in Ancient China (1986) -- 6. The Banu Musa: The Measurement of Plane and Solid Figures (ca. 850) -- 7. Madhava. The Power Series for Arctan and Pi (ca. 1400) -- 8. Hope-Jones. Ludolph (or Ludolff or Lucius) van Ceulen (1938) -- 9. Viete. Variorum de Rebus Mathematicis Reponsorum Liber VII (1593) -- 10. Wallis. Computation of [pi] by Successive Interpolations (1655) -- 11. Wallis. Arithmetica Infinitorum (1655) -- 12. Huygens. De Circull Magnitudine Inventa (1724) -- 13. Gregory. Correspondence with John Collins (1671) -- 14. Roy. The Discovery of the Series Formula for [pi] by Leibniz, Gregory, and Nilakantha (1990) -- 15. Jones. The First Use of [pi] for the Circle Ratio (1706) -- 16. Newton. Of the Method of Fluxious and Infinite Series (1737) -- 17. Euler. Chapter 10 of Introduction to Analysis of the Infinite (On the Use of Discovered Fractions to Sum Infinite Series) (1748) -- 18. Lambert. Memoire Sur Quelques Proprietes Remarquables Des Quantites Transcendentes Circulaires et Logarithmiques (1761) -- 19. Lambert. Irrationality of [pi] (1969) -- 20. Shanks. Contributions to Mathematics Comprising Chiefly of the Rectification of the Circle to 607 Places of Decimals (1853) -- 21. Hermite. Sur La Fonction Exponentielle (1873) -- 22. Lindemann. Ueber die Zahl [pi] (1882) -- 23. Weierstrass. Zu Lindemann's Abhandlung "Uber die Ludolphsche Zahl" (1885) -- 24. Hilbert. Ueber die Trancendenz der Zahlen e und [pi] (1893) -- 25. Goodwin. Quadrature of the Circle (1894) -- 26. Edington. House Bill No. 246, Indiana State Legislature, 1897 (1935) -- 27. Singmaster. The Legal Values of Pi (1985)."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/1405460714> ;
    schema:inLanguage "en" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/625954185> ;
    schema:name "Pi, a source book"@en ;
    schema:productID "36083554" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/36083554#PublicationEvent/new_york_springer_1997> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/1405460714#Agent/springer> ; # Springer
    schema:reviews <http://www.worldcat.org/title/-/oclc/36083554#Review/-1911295639> ;
    schema:url <http://media.obvsg.at/AC01902290-1002> ;
    schema:workExample <http://worldcat.org/isbn/9780387949246> ;
    schema:workExample <http://worldcat.org/isbn/9783540949244> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/36083554> ;
    .


Related Entities

<http://dbpedia.org/resource/New_York_City> # New York
    a schema:Place ;
    schema:name "New York" ;
    .

<http://experiment.worldcat.org/entity/work/data/1405460714#Person/berggren_j_l> # J. L. Berggren
    a schema:Person ;
    schema:familyName "Berggren" ;
    schema:givenName "J. L." ;
    schema:name "J. L. Berggren" ;
    .

<http://experiment.worldcat.org/entity/work/data/1405460714#Person/borwein_peter_b> # Peter B. Borwein
    a schema:Person ;
    schema:familyName "Borwein" ;
    schema:givenName "Peter B." ;
    schema:name "Peter B. Borwein" ;
    .

<http://experiment.worldcat.org/entity/work/data/1405460714#Topic/pi_le_nombre> # Pi (le nombre)
    a schema:Intangible ;
    schema:name "Pi (le nombre)"@en ;
    schema:name "Pi (Le nombre)"@fr ;
    .

<http://id.worldcat.org/fast/1063334> # Pi
    a schema:Intangible ;
    schema:name "Pi"@en ;
    .

<http://viaf.org/viaf/17287732> # Jonathan M. Borwein
    a schema:Person ;
    schema:familyName "Borwein" ;
    schema:givenName "Jonathan M." ;
    schema:name "Jonathan M. Borwein" ;
    .

<http://worldcat.org/isbn/9780387949246>
    a schema:ProductModel ;
    schema:isbn "0387949240" ;
    schema:isbn "9780387949246" ;
    .

<http://worldcat.org/isbn/9783540949244>
    a schema:ProductModel ;
    schema:isbn "3540949240" ;
    schema:isbn "9783540949244" ;
    .

<http://www.worldcat.org/oclc/625954185>
    a schema:CreativeWork ;
    rdfs:label "Pi, a source book." ;
    schema:description "Online version:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/36083554> ; # Pi, a source book
    .

<http://www.worldcat.org/title/-/oclc/36083554#Review/-1911295639>
    a schema:Review ;
    schema:itemReviewed <http://www.worldcat.org/oclc/36083554> ; # Pi, a source book
    schema:reviewBody ""This book documents the history of pi from the dawn of mathematical time to the present. The story of pi reflects the most seminal, the most serious, and sometimes the most whimsical aspects of mathematics. Much significant mathematics originates with pi, and many great mathematicians have contributed to this story's unfolding." "Mathematicians and historians of mathematics will find this book indispensable. Teachers at every level can find here ample resources for anything from individual talks and student projects to special topics courses."--Jacket." ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.