## Find a copy in the library

Finding libraries that hold this item...

## Details

Document Type: | Book |
---|---|

All Authors / Contributors: |
Merrick Lee Furst; John E Hopcroft; Eugene Luks |

OCLC Number: | 63578955 |

Notes: | Typescript. |

Description: | 15 pages ; 28 cm. |

Series Title: | Technical report (Cornell University. Department of Computer Science), TR 80-442. |

Responsibility: | Merrick Furst, John Hopcroft, Eugene Luks. |

### Abstract:

A permutation group on n letters may always be represented by a small set of generators, even though its size may be exponential in n. We show that it is practical to use such a representation since many problems such as membership testing, equality testing, and inclusion testing are decidable in polynomial time. In addition, we demonstrate that the normal closure of a subgroup can be computed in polynomial time, and that this procedure can be used to test a group for solvability. We also describe an approach to computing the intersection of two groups. The procedures and techniques have wide applicability and have recently been used to improve many graph isomorphism algorithms.

## Reviews

*User-contributed reviews*

Add a review and share your thoughts with other readers.
Be the first.

Add a review and share your thoughts with other readers.
Be the first.

## Tags

Add tags for "Polynomial-time algorithms for permutation groups".
Be the first.