omitir hasta el contenido
Polynomials Ver este material de antemano
CerrarVer este material de antemano
Chequeando…

Polynomials

Autor: Tom M Apostol; California Institute of Technology.; Project Mathematics!
Editorial: Pasadena, CA : California Institute of Technology, ©1991.
Serie: Project mathematics.
Edición/Formato:   Video VHS : Cinta VHS : Escuela secundaria (Segundo ciclo)   Material visual   Libro/Texto : Inglés (eng)Ver todas las ediciones y todos los formatos
Base de datos:WorldCat
Resumen:
Animations show how the Cartesian equation changes if the graph of a polynomial is translated or subjected to a vertical change of scale. Zeros, local extrema, and points of inflection are discussed. Real-life examples include parabolic trajectories and the use of cubic splines in designing sailboats and computer-generated teapots.
Calificación:

(todavía no calificado) 0 con reseñas - Ser el primero.

Temas
Más materiales como éste

 

Encontrar un ejemplar en la biblioteca

&AllPage.SpinnerRetrieving; Encontrando bibliotecas que tienen este material…

Detalles

Género/Forma: Educational films
Nonfiction films
Animated films
Short films
Video recordings for the hearing impaired
Aides audiovisuelles
Tipo de material: Escuela secundaria (Segundo ciclo), Grabación de video
Tipo de documento: Material visual, Libro/Texto
Todos autores / colaboradores: Tom M Apostol; California Institute of Technology.; Project Mathematics!
Número OCLC: 23237750
Nota del idioma: English with closed captions.
Créditos: Story editor, Tom M. Apostol ; computer animation, James F. Blinn ; Narrator, Al Hibbs.
Descripción: 1 videocassette (ca. 30 min.) : sd., col. ; 1/2 in. + 1 booklet.
Detalles: VHS format.
Contenido: Review of prerequisites --
Polynomials in real life --
Linear polynomials --
Quadratic polynomials --
Intersections of lines and parabolas --
Cubic polynomials --
Polynomials of higher degree --
Recap.
Título de la serie: Project mathematics.
Responsabilidad: California Institute of Technology ; producer/director Tom M. Apostol.

Resumen:

Animations show how the Cartesian equation changes if the graph of a polynomial is translated or subjected to a vertical change of scale. Zeros, local extrema, and points of inflection are discussed. Real-life examples include parabolic trajectories and the use of cubic splines in designing sailboats and computer-generated teapots.

Reseñas

Reseñas contribuidas por usuarios
Recuperando reseñas de GoodReads…
Recuperando reseñas de DOGObooks…

Etiquetas

Ser el primero.
Confirmar este pedido

Ya ha pedido este material. Escoja OK si desea procesar el pedido de todos modos.

Datos enlazados


<http://www.worldcat.org/oclc/23237750>
library:oclcnum"23237750"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/23237750>
rdf:typej.2:VHS
rdf:typeschema:Movie
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:contributor
schema:contributor
schema:contributor
schema:copyrightYear"1991"
schema:datePublished"1991"
schema:description"Review of prerequisites -- Polynomials in real life -- Linear polynomials -- Quadratic polynomials -- Intersections of lines and parabolas -- Cubic polynomials -- Polynomials of higher degree -- Recap."@en
schema:description"Animations show how the Cartesian equation changes if the graph of a polynomial is translated or subjected to a vertical change of scale. Zeros, local extrema, and points of inflection are discussed. Real-life examples include parabolic trajectories and the use of cubic splines in designing sailboats and computer-generated teapots."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/1779854756>
schema:genre"Short films"@en
schema:genre"Nonfiction films."@en
schema:genre"Animated films."@en
schema:genre"Video recordings for the hearing impaired."@en
schema:genre"Short films."@en
schema:genre"Educational films."@en
schema:inLanguage"en"
schema:name"Polynomials"@en
schema:publisher
schema:url

Content-negotiable representations

Cerrar ventana

Inicie una sesión con WorldCat 

¿No tienes una cuenta? Puede fácilmente crear una cuenta gratuita.