skip to content
Power system dynamics, stability and control Preview this item
ClosePreview this item

Power system dynamics, stability and control

Author: Jan Machowski; Janusz W Bialek; J R Bumby
Publisher: Oxford : Wiley-Blackwell, 2008.
Edition/Format:   Print book : English : 2nd edView all editions and formats

This book is the fully revised and updated second edition of Power System Dynamics and Stability published in 1997. The modified title Power System Dynamics: Stability and Control reflects a  Read more...


(not yet rated) 0 with reviews - Be the first.

More like this


Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...


Document Type: Book
All Authors / Contributors: Jan Machowski; Janusz W Bialek; J R Bumby
ISBN: 0470725583 9780470725580
OCLC Number: 254732191
Notes: Previous ed.: published as Power system dynamics and stability. Chichester: John Wiley, 1997.
Description: 1 v.
Contents: About The Authors. Preface. Acknowledgements. List of Symbols. PART I: INTRODUCTION TO POWER SYSTEMS. 1 Introduction . 1.1 Stability and Control of a Dynamic System. 1.2 Classification of Power System Dynamics. 1.3 Two Pairs of Important Quantities: Reactive Power/Voltage and Real Power/Frequency. 1.4 Stability of Power System. 1.5 Security of Power System. 1.6 Brief Historical Overview. 2. Power System Components. 2.1 Structure of the Electrical Power System. 2.2 Generating Units. 2.3 Substations. 2.4 Transmission and Distribution Network. 2.5 Protection. 2.6 Wide Area Measurement Systems. 3. The Power System in the Steady-State. 3.1. Transmission Lines. 3.2. Transformers. 3.3. Synchronous Generators. 3.4. Power System Loads. 3.5. Network Equations. 3.6. Power Flows in Transmission Networks. PART II: INTRODUCTION TO POWER SYSTEM DYNAMICS. 4. Electromagnetic Phenomena. 4.1. Fundamentals. 4.2. Three-Phase Short-Circuit on a Synchronous Generator. 4.3. Phase-to-Phase Short-Circuit. 4.4. Synchronization. 4.5. Short Circuit in a Network and its Clearing. 5. Electromechanical Dynamics - Small Disturbances. 5.1. Swing Equation. 5.2. Damping Power. 5.3. Equilibrium Points. 5.4. Steady-State Stability of Unregulated System. 5.5. Steady-State Stability of the Regulated System. 6. Electromechanical Dynamics - Large Disturbances. 6.1. Transient Stability. 6.2. Swings in Multi-Machine Systems. 6.3. Direct Method for Stability Assessment. 6.4. Synchronization. 6.5. Asynchronous Operation and Resynchronization. 6.6 Out-Of-Step Protection Systems. 6.7. Torsional Oscillations in the Drive Shaft. 7. Wind Power. 7.1 Wind Turbines. 7.2 Induction Machine Equivalent Circuit. 7.3 Induction Generator Coupled to the Grid. 7.4 Induction Generators with Slightly Increased Speed Range Via External Rotor Resistance. 7.5 Induction Generators with Significantly Increased Speed Range: DFIGs. 7.6 Fully Rated Converter Systems: Wide Speed Control. 7.7 Peak Power Tracking Of Variable Speed Wind Turbines. 7.8 Connections of Wind Farms. 7.9 Fault Behaviour of Induction Generators. 7.10 Influence of Wind Generators on Power System Stability. 8. Voltage Stability. 8.1. Network Feasibility. 8.2. Stability Criteria. 8.3. Critical Load Demand and Voltage Collapse. 8.4. Static Analysis. 8.5. Dynamic Analysis. 8.6. Prevention of Voltage Collapse. 8.7. Self-Excitation of a Generator Operating on a Capacitive Load. 9. Frequency Stability and Control. 9.1. Automatic Generation Control. 9.2. Stage I - Rotor Swings in the Generators. 9.3. Stage II - Frequency Drop. 9.4. Stage III - Primary Control. 9.5. STAGE IV - Secondary Control. 9.6. FACTS Devices in Tie-Lines. 10. Stability Enhancement. 10.1. Power System Stabilizers. 10.2. Fast Valving. 10.3. Braking Resistors. 10.4. Generator Tripping. 10.5. Shunt FACTS Devices. 10.6. Series Compensators. 10.7. Unified Power Flow Controller . PART III: ADVANCED TOPICS IN POWER SYSTEM DYNAMICS. 11. Advanced Power System Modelling. 11.1 Synchronous Generator. 11.2. Excitation Systems. 11.3. Turbines and Turbine Governors. 11.4. FACTS Devices. 12. Steady-State Stability of Multi-Machine System. 12.1. Mathematical Background. 12.2. Steady-State Stability of Unregulated System. 12.3. Steady-State Stability of The Regulated System. 13. Power System Dynamic Simulation. 13.1. Numerical Integration Methods. 13.2. The Partitioned-Solution. 13.3. The Simultaneous Solution Methods. 13.4. Comparison Between the Methods. 14. Power System Model Reduction - Equivalents. 14.1. Types of Equivalents. 14.2. Network Transformation. 14.3. Aggregation of Generating Units. 14.4. Equivalent Model of External Subsystem. 14.5. Coherency Recognition. 14.6. Properties of Coherency-Based Equivalents. Appendix. References. Index.
Responsibility: Jan Machowski, Janusz Bialek and Jim Bumby.


Editorial reviews

Publisher Synopsis

This up to date second edition of the book will certainly be as successful as the first one. ( IEEE Industrial Electronics Magazine, December 2009) It is well written with a good balance between Read more...

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...


Be the first.

Similar Items

Related Subjects:(4)

User lists with this item (1)

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data

schema:bookEdition"2nd ed."
schema:name"Power system dynamics, stability and control"

Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.