skip to content
Primal-dual interior-point methods Preview this item
ClosePreview this item

Primal-dual interior-point methods

Author: Stephen J Wright
Publisher: Philadelphia : Society for Industrial and Applied Mathematics, ©1997.
Edition/Format:   Print book : EnglishView all editions and formats

Presents the major primal-dual algorithms for linear programming. A thorough, straightforward description of the theoretical properties of these methods.


(not yet rated) 0 with reviews - Be the first.

More like this


Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...


Document Type: Book
All Authors / Contributors: Stephen J Wright
ISBN: 089871382X 9780898713824
OCLC Number: 35285484
Description: xx, 289 p. : ill. ; 26 cm.
Contents: Preface; Notation; 1. Introduction. Linear Programming; Primal-Dual Methods; The Central Path; A Primal-Dual Framework; Path-Following Methods; Potential-Reduction Methods; Infeasible Starting Points; Superlinear Convergence; Extensions; Mehrotra's Predictor-Corrector Algorithm; Linear Algebra Issues; Karmarkar's Algorithm; 2. Background. Linear Programming and Interior-Point Methods; Standard Form; Optimality Conditions, Duality, and Solution Sets; The B {SYMBOL 200 \f "Symbol"} N Partition and Strict Complementarity; A Strictly Interior Point; Rank of the Matrix A; Bases and Vertices; Farkas's Lemma and a Proof of the Goldman-Tucker Result; The Central Path; Background. Primal Method; Primal-Dual Methods. Development of the Fundamental Ideas; Notes and References; 3. Complexity Theory. Polynomial Versus Exponential, Worst Case vs Average Case; Storing the Problem Data. Dimension and Size; The Turing Machine and Rational Arithmetic; Primal-Dual Methods and Rational Arithmetic; Linear Programming and Rational Numbers; Moving to a Solution from an Interior Point; Complexity of Simplex, Ellipsoid, and Interior-Point Methods; Polynomial and Strongly Polynomial Algorithms; Beyond the Turing Machine Model; More on the Real-Number Model and Algebraic Complexity; A General Complexity Theorem for Path-Following Methods; Notes and References; 4. Potential-Reduction Methods. A Primal-Dual Potential-Reduction Algorithm; Reducing Forces Convergence; A Quadratic Estimate of \Phi _{\rho } along a Feasible Direction; Bounding the Coefficients in The Quadratic Approximation; An Estimate of the Reduction in \Phi _{\rho } and Polynomial Complexity; What About Centrality?; Choosing {SYMBOL 114 \f "Symbol"} and {SYMBOL 97 \f "Symbol"}; Notes and References; 5. Path-Following Algorithms. The Short-Step Path-Following Algorithm; Technical Results; The Predictor-Corrector Method; A Long-Step Path-Following Algorithm; Limit Points of the Iteration Sequence; Proof of Lemma 5.3; Notes and References; 6. Infeasible-Interior-Point Algorithms. The Algorithm; Convergence of Algorithm IPF; Technical Results I. Bounds on \nu _k \delimiter "026B30D (x^k,s^k) \delimiter "026B30D; Technical Results II. Bounds on (D^k)^{-1} \Delta x^k and D^k \Delta s^k; Technical Results III. A Uniform Lower Bound on {SYMBOL 97 \f "Symbol"}k; Proofs of Theorems 6.1 and 6.2; Limit Points of the Iteration Sequence; 7. Superlinear Convergence and Finite Termination. Affine-Scaling Steps; An Estimate of ({SYMBOL 68 \f "Symbol"}x, {SYMBOL 68 \f "Symbol"} s). The Feasible Case; An Estimate of ({SYMBOL 68 \f "Symbol"} x, {SYMBOL 68 \f "Symbol"} s). The Infeasible Case; Algorithm PC Is Superlinear; Nearly Quadratic Methods; Convergence of Algorithm LPF+; Convergence of the Iteration Sequence; {SYMBOL 206 \f "Symbol"}(A,b,c) and Finite Termination; A Finite Termination Strategy; Recovering an Optimal Basis; More on {SYMBOL 206 \f "Symbol"} (A,b,c); Notes and References; 8. Extensions. The Monotone LCP; Mixed and Horizontal LCP; Strict Complementarity and LCP; Convex QP; Convex Programming; Monotone Nonlinear Complementarity and Variational Inequalities; Semidefinite Programming; Proof of Theorem 8.4. Notes and References; 9. Detecting Infeasibility. Self-Duality; The Simplified HSD Form; The HSDl Form; Identifying a Solution-Free Region; Implementations of the HSD Formulations; Notes and References; 10. Practical Aspects of Primal-Dual Algorithms. Motivation for Mehrotra's Algorithm; The Algorithm; Superquadratic Convergence; Second-Order Trajectory-Following Methods; Higher-Order Methods; Further Enhancements; Notes and References; 11. Implementations. Three Forms of the Step Equation; The Cholesky Factorization; Sparse Cholesky Factorization. Minimum-Degree Orderings; Other Orderings; Small Pivots in the Cholesky Factorization; Dense Columns in A; The Augmented System Formulat
Responsibility: Stephen J. Wright.


Editorial reviews

Publisher Synopsis

'The current hottest topic in optimization is interior-point methods. Steve Wright, a renowned expert in optimization, has written a truly excellent introduction to this topic. We have used this book Read more...

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...


Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data

Primary Entity

<> # Primal-dual interior-point methods
    a schema:CreativeWork, schema:Book ;
    library:oclcnum "35285484" ;
    library:placeOfPublication <> ;
    library:placeOfPublication <> ; # Philadelphia
    schema:about <> ; # Optimaliseren
    schema:about <> ; # Lineaire programmering
    schema:about <> ; # Mathematical optimization
    schema:about <> ; # Linear programming
    schema:about <> ; # Interior-point methods
    schema:about <> ;
    schema:about <> ; # Optimisation mathématique
    schema:about <> ; # Programmation linéaire
    schema:bookFormat bgn:PrintBook ;
    schema:copyrightYear "1997" ;
    schema:creator <> ; # Stephen J. Wright
    schema:datePublished "1997" ;
    schema:exampleOfWork <> ;
    schema:inLanguage "en" ;
    schema:name "Primal-dual interior-point methods"@en ;
    schema:numberOfPages "289" ;
    schema:productID "35285484" ;
    schema:publication <> ;
    schema:publisher <> ; # Society for Industrial and Applied Mathematics
    schema:workExample <> ;
    wdrs:describedby <> ;

Related Entities

<> # Society for Industrial and Applied Mathematics
    a bgn:Agent ;
    schema:name "Society for Industrial and Applied Mathematics" ;

<> # Stephen J. Wright
    a schema:Person ;
    schema:birthDate "1960" ;
    schema:familyName "Wright" ;
    schema:givenName "Stephen J." ;
    schema:name "Stephen J. Wright" ;

<> # Lineaire programmering
    a schema:Intangible ;
    schema:name "Lineaire programmering"@en ;

<> # Optimisation mathématique
    a schema:Intangible ;
    schema:name "Optimisation mathématique"@fr ;

<> # Programmation linéaire
    a schema:Intangible ;
    schema:name "Programmation linéaire"@fr ;

<> # Mathematical optimization
    a schema:Intangible ;
    schema:name "Mathematical optimization"@en ;

<> # Interior-point methods
    a schema:Intangible ;
    schema:name "Interior-point methods"@en ;

<> # Linear programming
    a schema:Intangible ;
    schema:name "Linear programming"@en ;

    a schema:ProductModel ;
    schema:bookFormat schema:Paperback ;
    schema:isbn "089871382X" ;
    schema:isbn "9780898713824" ;

Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.