skip to content
Proving inverse-positivity of linear operators by reduction. Preview this item
ClosePreview this item
Checking...

Proving inverse-positivity of linear operators by reduction.

Author: John Schroeder; BOEING SCIENTIFIC RESEARCH LABS SEATTLE WASH MATHEMATICS RESEARCH LAB.
Publisher: Ft. Belvoir Defense Technical Information Center DEC 1969.
Edition/Format:   Print book : English
Database:WorldCat
Summary:
A method is presented to prove that a linear operator M is inverse-positive, i.e. Mu = or> o implies u = or> o. The method consists in reducing the problem for the given operator M to a simpler problem. Sometimes, iterated reductions are appropriate, for example, if M is a differential operator of higher order. (Author).
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Document Type: Book
All Authors / Contributors: John Schroeder; BOEING SCIENTIFIC RESEARCH LABS SEATTLE WASH MATHEMATICS RESEARCH LAB.
OCLC Number: 227578453
Description: 20 pages

Abstract:

A method is presented to prove that a linear operator M is inverse-positive, i.e. Mu = or> o implies u = or> o. The method consists in reducing the problem for the given operator M to a simpler problem. Sometimes, iterated reductions are appropriate, for example, if M is a differential operator of higher order. (Author).

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/227578453> # Proving inverse-positivity of linear operators by reduction.
    a schema:Book, schema:CreativeWork ;
   library:oclcnum "227578453" ;
   library:placeOfPublication <http://id.loc.gov/vocabulary/countries/vau> ;
   library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/137285418#Place/ft_belvoir> ; # Ft. Belvoir
   schema:about <http://experiment.worldcat.org/entity/work/data/137285418#Topic/differential_equations> ; # Differential equations)
   schema:about <http://experiment.worldcat.org/entity/work/data/137285418#Topic/numerical_mathematics> ; # Numerical Mathematics
   schema:about <http://experiment.worldcat.org/entity/work/data/137285418#Topic/theorems> ; # Theorems
   schema:about <http://experiment.worldcat.org/entity/work/data/137285418#Topic/operators_mathematics> ; # (Operators(mathematics)
   schema:about <http://experiment.worldcat.org/entity/work/data/137285418#Topic/boundary_value_problems> ; # Boundary value problems
   schema:about <http://experiment.worldcat.org/entity/work/data/137285418#Topic/numerical_analysis> ; # Numerical analysis
   schema:bookFormat bgn:PrintBook ;
   schema:contributor <http://experiment.worldcat.org/entity/work/data/137285418#Person/schroeder_john> ; # John Schroeder
   schema:contributor <http://experiment.worldcat.org/entity/work/data/137285418#Organization/boeing_scientific_research_labs_seattle_wash_mathematics_research_lab> ; # BOEING SCIENTIFIC RESEARCH LABS SEATTLE WASH MATHEMATICS RESEARCH LAB.
   schema:datePublished "DEC 1969" ;
   schema:datePublished "1969" ;
   schema:description "A method is presented to prove that a linear operator M is inverse-positive, i.e. Mu = or> o implies u = or> o. The method consists in reducing the problem for the given operator M to a simpler problem. Sometimes, iterated reductions are appropriate, for example, if M is a differential operator of higher order. (Author)."@en ;
   schema:exampleOfWork <http://worldcat.org/entity/work/id/137285418> ;
   schema:inLanguage "en" ;
   schema:name "Proving inverse-positivity of linear operators by reduction."@en ;
   schema:productID "227578453" ;
   schema:publication <http://www.worldcat.org/title/-/oclc/227578453#PublicationEvent/ft_belvoirdefense_technical_information_centerdec_1969> ;
   schema:publisher <http://experiment.worldcat.org/entity/work/data/137285418#Agent/defense_technical_information_center> ; # Defense Technical Information Center
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/227578453> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/137285418#Agent/defense_technical_information_center> # Defense Technical Information Center
    a bgn:Agent ;
   schema:name "Defense Technical Information Center" ;
    .

<http://experiment.worldcat.org/entity/work/data/137285418#Organization/boeing_scientific_research_labs_seattle_wash_mathematics_research_lab> # BOEING SCIENTIFIC RESEARCH LABS SEATTLE WASH MATHEMATICS RESEARCH LAB.
    a schema:Organization ;
   schema:name "BOEING SCIENTIFIC RESEARCH LABS SEATTLE WASH MATHEMATICS RESEARCH LAB." ;
    .

<http://experiment.worldcat.org/entity/work/data/137285418#Person/schroeder_john> # John Schroeder
    a schema:Person ;
   schema:familyName "Schroeder" ;
   schema:givenName "John" ;
   schema:name "John Schroeder" ;
    .

<http://experiment.worldcat.org/entity/work/data/137285418#Topic/boundary_value_problems> # Boundary value problems
    a schema:Intangible ;
   schema:name "Boundary value problems"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/137285418#Topic/differential_equations> # Differential equations)
    a schema:Intangible ;
   schema:name "Differential equations)"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/137285418#Topic/numerical_mathematics> # Numerical Mathematics
    a schema:Intangible ;
   schema:name "Numerical Mathematics"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/137285418#Topic/operators_mathematics> # (Operators(mathematics)
    a schema:Intangible ;
   schema:name "(Operators(mathematics)"@en ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.