skip to content
Quantifying research integrity Preview this item
ClosePreview this item
Checking...

Quantifying research integrity

Author: Michael S Seadle
Publisher: [San Rafael, California] : Morgan & Claypool, 2017.
Series: Synthesis digital library of engineering and computer science.; Synthesis lectures on information concepts, retrieval, and services, # 53.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Summary:
Institutions typically treat research integrity violations as black and white, right or wrong. The result is that the wide range of grayscale nuances that separate accident, carelessness, and bad practice from deliberate fraud and malpractice often get lost. This lecture looks at how to quantify the grayscale range in three kinds of research integrity violations: plagiarism, data falsification, and image  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Print version:
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Michael S Seadle
ISBN: 9781627059671 1627059679
OCLC Number: 970006781
Notes: Part of: Synthesis digital library of engineering and computer science.
Description: 1 online resource (1 PDF (xix, 121 pages)) : illustrations.
Contents: 1. Introduction --
1.1 Overview --
1.2 Context --
1.3 Time --
1.4 Images --
2. State of the art --
2.1 Introduction --
2.2 Legal issues --
2.3 Ethics --
2.3.1 Second-language students --
2.3.2 Self-plagiarism --
2.4 Prevention --
2.4.1 Education --
2.4.2 Detection as prevention --
2.5 Detection tools --
2.5.1 Plagiarism tools --
2.5.2 iThenticate --
2.5.3 Crowdsourcing --
2.5.4 Image-manipulation tools --
2.6 Replication --
3. Quantifying plagiarism --
3.1 Overview --
3.1.1 History --
3.1.2 Definition --
3.1.3 Pages and percents --
3.1.4 Context, quotes, and references --
3.1.5 Sentences, paragraphs, and other units --
3.1.6 Self-plagiarism --
3.2 In the humanities --
3.2.1 Overview --
3.2.2 Paragraph-length examples --
3.2.3 Book-length examples --
3.3 In the social sciences --
3.3.1 Overview --
3.3.2 Example 1 --
3.3.3 Example 2 --
3.4 In the natural sciences --
3.4.1 Overview --
3.4.2 Example 1 --
3.4.3 Example 2 --
3.5 Conclusion: plagiarism --
4. Quantifying data falsification --
4.1 Introduction --
4.2 Metadata --
4.3 Humanities --
4.3.1 Introduction --
4.3.2 History --
4.3.3 Art and art history --
4.3.4 Ethnography --
4.3.5 Literature --
4.4 Social sciences --
4.4.1 Introduction --
4.4.2 Replication studies --
4.4.3 Diederik Stapel --
4.4.4 James Hunton --
4.4.5 Database revisions --
4.4.6 Data manipulation --
4.5 Natural sciences --
4.5.1 Introduction --
4.5.2 Lab sciences --
4.5.3 Medical sciences --
4.5.4 Computing and statistics --
4.5.5 Other non-lab sciences --
4.6 Conclusion --
5. Quantifying image manipulation --
5.1 Introduction --
5.2 Digital imaging technology --
5.2.1 Background --
5.2.2 How a digital camera works --
5.2.3 Raw format --
5.2.4 Discovery analytics --
5.2.5 Digital video --
5.3 Arts and humanities --
5.3.1 Introduction --
5.3.2 Arts --
5.3.3 Humanities --
5.4 Social sciences and computing --
5.4.1 Overview --
5.4.2 Training and visualization --
5.4.3 Standard manipulations --
5.5 Biology --
5.5.1 Legitimate manipulations --
5.5.2 Illegitimate manipulations --
5.6 Medicine --
5.6.1 Limits --
5.6.2 Case 1 --
5.6.3 Case 2 --
5.7 Other natural sciences --
5.8 Detection tools and services --
5.9 Conclusion --
6. Applying the metrics --
6.1 Introduction --
6.2 Detecting gray zones --
6.3 Determining falsification --
6.4 Prevention --
6.5 Conclusion --
6.6 HEADT Centre --
Bibliography --
Author's biography.
Series Title: Synthesis digital library of engineering and computer science.; Synthesis lectures on information concepts, retrieval, and services, # 53.
Responsibility: Michael Seadle.
More information:

Abstract:

Institutions typically treat research integrity violations as black and white, right or wrong. The result is that the wide range of grayscale nuances that separate accident, carelessness, and bad practice from deliberate fraud and malpractice often get lost. This lecture looks at how to quantify the grayscale range in three kinds of research integrity violations: plagiarism, data falsification, and image manipulation. Quantification works best with plagiarism, because the essential one-to-one matching algorithms are well known and established tools for detecting when matches exist. Questions remain, however, of how many matching words of what kind in what location in which discipline constitute reasonable suspicion of fraudulent intent. Different disciplines take different perspectives on quantity and location. Quantification is harder with data falsification, because the original data are often not available, and because experimental replication remains surprisingly difficult. The same is true with image manipulation, where tools exist for detecting certain kinds of manipulations, but where the tools are also easily defeated. This lecture looks at how to prevent violations of research integrity from a pragmatic viewpoint, and at what steps can institutions and publishers take to discourage problems beyond the usual ethical admonitions. There are no simple answers, but two measures can help: the systematic use of detection tools and requiring original data and images. These alone do not suffice, but they represent a start. The scholarly community needs a better awareness of the complexity of research integrity decisions. Only an open and wide-spread international discussion can bring about a consensus on where the boundary lines are and when grayscale problems shade into black. One goal of this work is to move that discussion forward.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/970006781> # Quantifying research integrity
    a schema:MediaObject, schema:Book, schema:CreativeWork ;
    library:oclcnum "970006781" ;
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/cau> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/4051720957#Thing/plagiarism_tools> ; # plagiarism tools
    schema:about <http://dewey.info/class/174.95/e23/> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/4051720957#Thing/data_falsification> ; # data falsification
    schema:about <http://experiment.worldcat.org/entity/work/data/4051720957#Thing/forensic_droplets> ; # forensic droplets
    schema:about <http://experiment.worldcat.org/entity/work/data/4051720957#Thing/grayscale_decisions> ; # grayscale decisions
    schema:about <http://experiment.worldcat.org/entity/work/data/4051720957#Thing/research_integrity> ; # research integrity
    schema:about <http://experiment.worldcat.org/entity/work/data/4051720957#Thing/image_manipulation> ; # image manipulation
    schema:about <http://experiment.worldcat.org/entity/work/data/4051720957#Topic/integrity> ; # Integrity
    schema:about <http://experiment.worldcat.org/entity/work/data/4051720957#Topic/research_moral_and_ethical_aspects> ; # Research--Moral and ethical aspects
    schema:about <http://experiment.worldcat.org/entity/work/data/4051720957#Thing/research_fraud> ; # research fraud
    schema:about <http://experiment.worldcat.org/entity/work/data/4051720957#Thing/plagiarism> ; # plagiarism
    schema:about <http://experiment.worldcat.org/entity/work/data/4051720957#Thing/retraction_watch> ; # Retraction Watch
    schema:about <http://experiment.worldcat.org/entity/work/data/4051720957#Thing/headt_centre> ; # HEADT Centre
    schema:about <http://experiment.worldcat.org/entity/work/data/4051720957#Thing/office_of_research_integrity> ; # Office of Research Integrity
    schema:about <http://experiment.worldcat.org/entity/work/data/4051720957#Thing/detection_tools> ; # detection tools
    schema:about <http://experiment.worldcat.org/entity/work/data/4051720957#Topic/experimental_design> ; # Experimental design
    schema:about <http://experiment.worldcat.org/entity/work/data/4051720957#Topic/business_&_economics_business_ethics> ; # BUSINESS & ECONOMICS / Business Ethics
    schema:author <http://experiment.worldcat.org/entity/work/data/4051720957#Person/seadle_michael_s_1950> ; # Michael S. Seadle
    schema:bookFormat schema:EBook ;
    schema:datePublished "2017" ;
    schema:description "Institutions typically treat research integrity violations as black and white, right or wrong. The result is that the wide range of grayscale nuances that separate accident, carelessness, and bad practice from deliberate fraud and malpractice often get lost. This lecture looks at how to quantify the grayscale range in three kinds of research integrity violations: plagiarism, data falsification, and image manipulation. Quantification works best with plagiarism, because the essential one-to-one matching algorithms are well known and established tools for detecting when matches exist. Questions remain, however, of how many matching words of what kind in what location in which discipline constitute reasonable suspicion of fraudulent intent. Different disciplines take different perspectives on quantity and location. Quantification is harder with data falsification, because the original data are often not available, and because experimental replication remains surprisingly difficult. The same is true with image manipulation, where tools exist for detecting certain kinds of manipulations, but where the tools are also easily defeated. This lecture looks at how to prevent violations of research integrity from a pragmatic viewpoint, and at what steps can institutions and publishers take to discourage problems beyond the usual ethical admonitions. There are no simple answers, but two measures can help: the systematic use of detection tools and requiring original data and images. These alone do not suffice, but they represent a start. The scholarly community needs a better awareness of the complexity of research integrity decisions. Only an open and wide-spread international discussion can bring about a consensus on where the boundary lines are and when grayscale problems shade into black. One goal of this work is to move that discussion forward."@en ;
    schema:description "1. Introduction -- 1.1 Overview -- 1.2 Context -- 1.3 Time -- 1.4 Images --"@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/4051720957> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://worldcat.org/issn/1947-9468> ; # Synthesis lectures on information concepts, retrieval, and services ;
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/4051720957#Series/synthesis_digital_library_of_engineering_and_computer_science> ; # Synthesis digital library of engineering and computer science.
    schema:isSimilarTo <http://worldcat.org/entity/work/data/4051720957#CreativeWork/> ;
    schema:name "Quantifying research integrity"@en ;
    schema:productID "970006781" ;
    schema:url <http://dx.doi.org/10.2200/S00743ED1V01Y201611ICR053> ;
    schema:url <https://doi.org/10.2200/S00743ED1V01Y201611ICR053> ;
    schema:url <http://gate.lib.buffalo.edu/login?url=http://dx.doi.org/10.2200/S00743ED1V01Y201611ICR053> ;
    schema:url <http://www.morganclaypool.com/doi/abs/10.2200/S00743ED1V01Y201611ICR053> ;
    schema:url <http://public.eblib.com/choice/PublicFullRecord.aspx?p=4774128> ;
    schema:url <http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=1445455> ;
    schema:workExample <http://worldcat.org/isbn/9781627059671> ;
    schema:workExample <http://dx.doi.org/10.2200/S00743ED1V01Y201611ICR053> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/970006781> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/4051720957#Person/seadle_michael_s_1950> # Michael S. Seadle
    a schema:Person ;
    schema:birthDate "1950" ;
    schema:familyName "Seadle" ;
    schema:givenName "Michael S." ;
    schema:name "Michael S. Seadle" ;
    .

<http://experiment.worldcat.org/entity/work/data/4051720957#Series/synthesis_digital_library_of_engineering_and_computer_science> # Synthesis digital library of engineering and computer science.
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/970006781> ; # Quantifying research integrity
    schema:name "Synthesis digital library of engineering and computer science." ;
    .

<http://experiment.worldcat.org/entity/work/data/4051720957#Thing/data_falsification> # data falsification
    a schema:Thing ;
    schema:name "data falsification" ;
    .

<http://experiment.worldcat.org/entity/work/data/4051720957#Thing/detection_tools> # detection tools
    a schema:Thing ;
    schema:name "detection tools" ;
    .

<http://experiment.worldcat.org/entity/work/data/4051720957#Thing/forensic_droplets> # forensic droplets
    a schema:Thing ;
    schema:name "forensic droplets" ;
    .

<http://experiment.worldcat.org/entity/work/data/4051720957#Thing/grayscale_decisions> # grayscale decisions
    a schema:Thing ;
    schema:name "grayscale decisions" ;
    .

<http://experiment.worldcat.org/entity/work/data/4051720957#Thing/image_manipulation> # image manipulation
    a schema:Thing ;
    schema:name "image manipulation" ;
    .

<http://experiment.worldcat.org/entity/work/data/4051720957#Thing/office_of_research_integrity> # Office of Research Integrity
    a schema:Thing ;
    schema:name "Office of Research Integrity" ;
    .

<http://experiment.worldcat.org/entity/work/data/4051720957#Thing/plagiarism_tools> # plagiarism tools
    a schema:Thing ;
    schema:name "plagiarism tools" ;
    .

<http://experiment.worldcat.org/entity/work/data/4051720957#Thing/research_fraud> # research fraud
    a schema:Thing ;
    schema:name "research fraud" ;
    .

<http://experiment.worldcat.org/entity/work/data/4051720957#Thing/research_integrity> # research integrity
    a schema:Thing ;
    schema:name "research integrity" ;
    .

<http://experiment.worldcat.org/entity/work/data/4051720957#Thing/retraction_watch> # Retraction Watch
    a schema:Thing ;
    schema:name "Retraction Watch" ;
    .

<http://experiment.worldcat.org/entity/work/data/4051720957#Topic/business_&_economics_business_ethics> # BUSINESS & ECONOMICS / Business Ethics
    a schema:Intangible ;
    schema:name "BUSINESS & ECONOMICS / Business Ethics"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/4051720957#Topic/experimental_design> # Experimental design
    a schema:Intangible ;
    schema:name "Experimental design"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/4051720957#Topic/research_moral_and_ethical_aspects> # Research--Moral and ethical aspects
    a schema:Intangible ;
    schema:name "Research--Moral and ethical aspects"@en ;
    .

<http://worldcat.org/isbn/9781627059671>
    a schema:ProductModel ;
    schema:isbn "1627059679" ;
    schema:isbn "9781627059671" ;
    .

<http://worldcat.org/issn/1947-9468> # Synthesis lectures on information concepts, retrieval, and services ;
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/970006781> ; # Quantifying research integrity
    schema:issn "1947-9468" ;
    schema:name "Synthesis lectures on information concepts, retrieval, and services ;" ;
    schema:name "Synthesis lectures on information concepts, retrieval, and services," ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.