skip to content
Quantization on Nilpotent Lie Groups Preview this item
ClosePreview this item
Checking...

Quantization on Nilpotent Lie Groups

Author: Veronique Fischer; Michael Ruzhansky
Publisher: Cham : Springer International Publishing : Imprint : Birkhäuser, 2016.
Series: Progress in Mathematics, 314.
Edition/Format:   eBook : Document : English : 1st ed. 2016View all editions and formats
Summary:
This book presents a consistent development of the Kohn-Nirenberg type global quantization theory in the setting of graded nilpotent Lie groups in terms of their representations. It contains a detailed exposition of related background topics on homogeneous Lie groups, nilpotent Lie groups, and the analysis of Rockland operators on graded Lie groups together with their associated Sobolev spaces. For the specific  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Printed edition:
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Veronique Fischer; Michael Ruzhansky
ISBN: 9783319295589 3319295586 3319295578 9783319295572
OCLC Number: 945948187
Language Note: English.
Description: 1 online resource (XIII, 557 pages 1 illustration in color.) : online resource.
Contents: Preface --
Introduction --
Notation and conventions --
1 Preliminaries on Lie groups --
2 Quantization on compact Lie groups --
3 Homogeneous Lie groups --
4 Rockland operators and Sobolev spaces --
5 Quantization on graded Lie groups --
6 Pseudo-differential operators on the Heisenberg group --
A Miscellaneous --
B Group C* and von Neumann algebras --
Schrödinger representations and Weyl quantization --
Explicit symbolic calculus on the Heisenberg group --
List of quantizations --
Bibliography --
Index.
Series Title: Progress in Mathematics, 314.
Responsibility: by Veronique Fischer, Michael Ruzhansky.

Abstract:

This book presents a consistent development of the Kohn-Nirenberg type global quantization theory in the setting of graded nilpotent Lie groups in terms of their representations.  Read more...

Reviews

Editorial reviews

Publisher Synopsis

"The main topic of this prize-winning monograph is the development of a pseudo-differential calculus on homogeneous Lie groups-the nilpotent Lie group equipped with a family of dilations compatible Read more...

 
User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/945948187> # Quantization on Nilpotent Lie Groups
    a schema:Book, schema:CreativeWork, schema:MediaObject ;
    library:oclcnum "945948187" ;
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/gw> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/2952708921#Topic/mathematical_physics> ; # Mathematical physics
    schema:about <http://experiment.worldcat.org/entity/work/data/2952708921#Topic/calculus> ; # Calculus
    schema:about <http://dewey.info/class/512.55/e23/> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/2952708921#Topic/topological_groups> ; # Topological groups
    schema:about <http://experiment.worldcat.org/entity/work/data/2952708921#Topic/algebra> ; # Algebra
    schema:about <http://experiment.worldcat.org/entity/work/data/2952708921#Topic/lie_groups> ; # Lie groups
    schema:about <http://experiment.worldcat.org/entity/work/data/2952708921#Topic/physical_sciences_&_mathematics> ; # Physical Sciences & Mathematics
    schema:about <http://experiment.worldcat.org/entity/work/data/2952708921#Topic/harmonic_analysis> ; # Harmonic analysis
    schema:about <http://experiment.worldcat.org/entity/work/data/2952708921#Topic/mathematics> ; # Mathematics
    schema:about <http://experiment.worldcat.org/entity/work/data/2952708921#Topic/functional_analysis> ; # Functional analysis
    schema:author <http://experiment.worldcat.org/entity/work/data/2952708921#Person/ruzhansky_michael> ; # Michael Ruzhansky
    schema:author <http://experiment.worldcat.org/entity/work/data/2952708921#Person/fischer_veronique> ; # Veronique Fischer
    schema:bookEdition "1st ed. 2016." ;
    schema:bookFormat schema:EBook ;
    schema:datePublished "2016" ;
    schema:description "Preface -- Introduction -- Notation and conventions -- 1 Preliminaries on Lie groups -- 2 Quantization on compact Lie groups -- 3 Homogeneous Lie groups -- 4 Rockland operators and Sobolev spaces -- 5 Quantization on graded Lie groups -- 6 Pseudo-differential operators on the Heisenberg group -- A Miscellaneous -- B Group C* and von Neumann algebras -- Schrödinger representations and Weyl quantization -- Explicit symbolic calculus on the Heisenberg group -- List of quantizations -- Bibliography -- Index."@en ;
    schema:description "This book presents a consistent development of the Kohn-Nirenberg type global quantization theory in the setting of graded nilpotent Lie groups in terms of their representations. It contains a detailed exposition of related background topics on homogeneous Lie groups, nilpotent Lie groups, and the analysis of Rockland operators on graded Lie groups together with their associated Sobolev spaces. For the specific example of the Heisenberg group the theory is illustrated in detail. In addition, the book features a brief account of the corresponding quantization theory in the setting of compact Lie groups. The monograph is the winner of the 2014 Ferran Sunyer i Balaguer Prize."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/2952708921> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://worldcat.org/issn/0743-1643> ; # Progress in Mathematics ;
    schema:isSimilarTo <http://worldcat.org/entity/work/data/2952708921#CreativeWork/> ;
    schema:name "Quantization on Nilpotent Lie Groups"@en ;
    schema:productID "945948187" ;
    schema:url <https://login.libproxy.uregina.ca:8443/login?url=https://link.springer.com/openurl?genre=book&isbn=978-3-319-29557-2> ;
    schema:url <http://link.springer.com/book/10.1007%2F978-3-319-29558-9> ;
    schema:url <http://dx.doi.org/10.1007/978-3-319-29558-9> ;
    schema:url <https://link.springer.com/10.1007/978-3-319-29558-9> ;
    schema:url <http://link.springer.com/openurl?genre=book&isbn=978-3-319-29558-9> ;
    schema:url <https://link.springer.com/openurl?genre=book&isbn=978-3-319-29558-9> ;
    schema:url <https://link.springer.com/openurl?genre=book&isbn=978-3-319-29557-2> ;
    schema:workExample <http://dx.doi.org/10.1007/978-3-319-29558-9> ;
    schema:workExample <http://worldcat.org/isbn/9783319295589> ;
    schema:workExample <http://worldcat.org/isbn/9783319295572> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/945948187> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/2952708921#Person/fischer_veronique> # Veronique Fischer
    a schema:Person ;
    schema:familyName "Fischer" ;
    schema:givenName "Veronique" ;
    schema:name "Veronique Fischer" ;
    .

<http://experiment.worldcat.org/entity/work/data/2952708921#Person/ruzhansky_michael> # Michael Ruzhansky
    a schema:Person ;
    schema:familyName "Ruzhansky" ;
    schema:givenName "Michael" ;
    schema:name "Michael Ruzhansky" ;
    .

<http://experiment.worldcat.org/entity/work/data/2952708921#Topic/functional_analysis> # Functional analysis
    a schema:Intangible ;
    schema:name "Functional analysis"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/2952708921#Topic/harmonic_analysis> # Harmonic analysis
    a schema:Intangible ;
    schema:name "Harmonic analysis"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/2952708921#Topic/mathematical_physics> # Mathematical physics
    a schema:Intangible ;
    schema:name "Mathematical physics"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/2952708921#Topic/physical_sciences_&_mathematics> # Physical Sciences & Mathematics
    a schema:Intangible ;
    schema:name "Physical Sciences & Mathematics"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/2952708921#Topic/topological_groups> # Topological groups
    a schema:Intangible ;
    schema:name "Topological groups"@en ;
    .

<http://worldcat.org/entity/work/data/2952708921#CreativeWork/>
    a schema:CreativeWork ;
    schema:description "Printed edition:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/945948187> ; # Quantization on Nilpotent Lie Groups
    .

<http://worldcat.org/isbn/9783319295572>
    a schema:ProductModel ;
    schema:isbn "3319295578" ;
    schema:isbn "9783319295572" ;
    .

<http://worldcat.org/isbn/9783319295589>
    a schema:ProductModel ;
    schema:isbn "3319295586" ;
    schema:isbn "9783319295589" ;
    .

<http://worldcat.org/issn/0743-1643> # Progress in Mathematics ;
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/945948187> ; # Quantization on Nilpotent Lie Groups
    schema:issn "0743-1643" ;
    schema:name "Progress in Mathematics ;" ;
    schema:name "Progress in Mathematics," ;
    .

<https://login.libproxy.uregina.ca:8443/login?url=https://link.springer.com/openurl?genre=book&isbn=978-3-319-29557-2>
    rdfs:comment "Full text available from SpringerLINK ebooks - Mathematics and Statistics (2016)" ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.