skip to content
A Quasi-Projection Approximation Method Applied to Galerkin Procedures for Parabolic and Hyperbolic Equations. Preview this item
ClosePreview this item
Checking...

A Quasi-Projection Approximation Method Applied to Galerkin Procedures for Parabolic and Hyperbolic Equations.

Author: Jim Douglas, Jr.; Todd Dupont; Mary F Wheeler; WISCONSIN UNIV MADISON MATHEMATICS RESEARCH CENTER.
Publisher: Ft. Belvoir Defense Technical Information Center OCT 1974.
Edition/Format:   Print book : EnglishView all editions and formats
Database:WorldCat
Summary:
A technical method of approximating the Galerkin approximation to solutions of parabolic and hyperbolic equations can be based on a finite sequence of elliptic projections. The resulting function is called a quasi-projection, and it is used to study superconvergence phenomena associated with the Galerkin procedures.
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Document Type: Book
All Authors / Contributors: Jim Douglas, Jr.; Todd Dupont; Mary F Wheeler; WISCONSIN UNIV MADISON MATHEMATICS RESEARCH CENTER.
OCLC Number: 227371244
Description: 48 pages

Abstract:

A technical method of approximating the Galerkin approximation to solutions of parabolic and hyperbolic equations can be based on a finite sequence of elliptic projections. The resulting function is called a quasi-projection, and it is used to study superconvergence phenomena associated with the Galerkin procedures.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/227371244> # A Quasi-Projection Approximation Method Applied to Galerkin Procedures for Parabolic and Hyperbolic Equations.
    a schema:CreativeWork, schema:Book ;
    library:oclcnum "227371244" ;
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/vau> ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/2524045#Place/ft_belvoir> ; # Ft. Belvoir
    schema:about <http://experiment.worldcat.org/entity/work/data/2524045#Topic/numerical_integration> ; # Numerical integration
    schema:about <http://experiment.worldcat.org/entity/work/data/2524045#Topic/theorems> ; # Theorems
    schema:about <http://experiment.worldcat.org/entity/work/data/2524045#Topic/partial_differential_equations> ; # Partial differential equations
    schema:about <http://experiment.worldcat.org/entity/work/data/2524045#Thing/hyperbolic_differential_equations> ; # Hyperbolic differential equations
    schema:about <http://experiment.worldcat.org/entity/work/data/2524045#Topic/calculus_of_variations> ; # Calculus of variations
    schema:about <http://experiment.worldcat.org/entity/work/data/2524045#Thing/galerkin_method> ; # Galerkin method
    schema:about <http://experiment.worldcat.org/entity/work/data/2524045#Topic/approximation_mathematics> ; # Approximation(mathematics)
    schema:about <http://experiment.worldcat.org/entity/work/data/2524045#Topic/numerical_mathematics> ; # Numerical Mathematics
    schema:about <http://experiment.worldcat.org/entity/work/data/2524045#Thing/parabolic_differential_equations> ; # Parabolic differential equations
    schema:bookFormat bgn:PrintBook ;
    schema:contributor <http://viaf.org/viaf/66543314> ; # Mary F. Wheeler
    schema:contributor <http://viaf.org/viaf/17316602> ; # Jr. Jim Douglas
    schema:contributor <http://viaf.org/viaf/25134445> ; # Todd Dupont
    schema:contributor <http://experiment.worldcat.org/entity/work/data/2524045#Organization/wisconsin_univ_madison_mathematics_research_center> ; # WISCONSIN UNIV MADISON MATHEMATICS RESEARCH CENTER.
    schema:datePublished "1974" ;
    schema:datePublished "OCT 1974" ;
    schema:description "A technical method of approximating the Galerkin approximation to solutions of parabolic and hyperbolic equations can be based on a finite sequence of elliptic projections. The resulting function is called a quasi-projection, and it is used to study superconvergence phenomena associated with the Galerkin procedures."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/2524045> ;
    schema:inLanguage "en" ;
    schema:name "A Quasi-Projection Approximation Method Applied to Galerkin Procedures for Parabolic and Hyperbolic Equations."@en ;
    schema:productID "227371244" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/227371244#PublicationEvent/ft_belvoirdefense_technical_information_centeroct_1974> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/2524045#Agent/defense_technical_information_center> ; # Defense Technical Information Center
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/227371244> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/2524045#Agent/defense_technical_information_center> # Defense Technical Information Center
    a bgn:Agent ;
    schema:name "Defense Technical Information Center" ;
    .

<http://experiment.worldcat.org/entity/work/data/2524045#Organization/wisconsin_univ_madison_mathematics_research_center> # WISCONSIN UNIV MADISON MATHEMATICS RESEARCH CENTER.
    a schema:Organization ;
    schema:name "WISCONSIN UNIV MADISON MATHEMATICS RESEARCH CENTER." ;
    .

<http://experiment.worldcat.org/entity/work/data/2524045#Thing/galerkin_method> # Galerkin method
    a schema:Thing ;
    schema:name "Galerkin method" ;
    .

<http://experiment.worldcat.org/entity/work/data/2524045#Thing/hyperbolic_differential_equations> # Hyperbolic differential equations
    a schema:Thing ;
    schema:name "Hyperbolic differential equations" ;
    .

<http://experiment.worldcat.org/entity/work/data/2524045#Thing/parabolic_differential_equations> # Parabolic differential equations
    a schema:Thing ;
    schema:name "Parabolic differential equations" ;
    .

<http://experiment.worldcat.org/entity/work/data/2524045#Topic/approximation_mathematics> # Approximation(mathematics)
    a schema:Intangible ;
    schema:name "Approximation(mathematics)"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/2524045#Topic/calculus_of_variations> # Calculus of variations
    a schema:Intangible ;
    schema:name "Calculus of variations"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/2524045#Topic/numerical_integration> # Numerical integration
    a schema:Intangible ;
    schema:name "Numerical integration"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/2524045#Topic/numerical_mathematics> # Numerical Mathematics
    a schema:Intangible ;
    schema:name "Numerical Mathematics"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/2524045#Topic/partial_differential_equations> # Partial differential equations
    a schema:Intangible ;
    schema:name "Partial differential equations"@en ;
    .

<http://viaf.org/viaf/17316602> # Jr. Jim Douglas
    a schema:Person ;
    schema:familyName "Douglas" ;
    schema:givenName "Jim" ;
    schema:name "Jr. Jim Douglas" ;
    .

<http://viaf.org/viaf/25134445> # Todd Dupont
    a schema:Person ;
    schema:familyName "Dupont" ;
    schema:givenName "Todd" ;
    schema:name "Todd Dupont" ;
    .

<http://viaf.org/viaf/66543314> # Mary F. Wheeler
    a schema:Person ;
    schema:familyName "Wheeler" ;
    schema:givenName "Mary F." ;
    schema:name "Mary F. Wheeler" ;
    .

<http://www.worldcat.org/title/-/oclc/227371244>
    a genont:InformationResource, genont:ContentTypeGenericResource ;
    schema:about <http://www.worldcat.org/oclc/227371244> ; # A Quasi-Projection Approximation Method Applied to Galerkin Procedures for Parabolic and Hyperbolic Equations.
    schema:dateModified "2015-07-28" ;
    void:inDataset <http://purl.oclc.org/dataset/WorldCat> ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.