skip to content
Ramanujan's lost notebook. / Part I Preview this item
ClosePreview this item
Checking...

Ramanujan's lost notebook. / Part I

Author: George E Andrews; Bruce C Berndt
Publisher: New York ; London : Springer, 2005.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Database:WorldCat
Summary:
In the spring of 1976, George Andrews of Pennsylvania State University visited the library at Trinity College, Cambridge, to examine the papers of the late G.N. Watson. Among these papers, Andrews discovered a sheaf of 138 pages in the handwriting of Srinivasa Ramanujan. This manuscript was soon designated, "Ramanujan's lost notebook." Its discovery has frequently been deemed the mathematical equivalent of finding  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy online

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Additional Physical Format: Print version:
Andrews, George E., 1938-
Ramanujan's lost notebook. Part I.
New York ; London : Springer, 2005
(DLC) 2005923547
(OCoLC)60320109
Named Person: Srinivasa Ramanujan Aiyangar; Srinivasa Ramanujan Aiyangar
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: George E Andrews; Bruce C Berndt
ISBN: 038728124X 9780387281247 1280308346 9781280308345 9780387255293 038725529X
OCLC Number: 64552624
Description: 1 online resource (xiv, 437) : portraits
Contents: The Rogers-Ramanujan Continued Fraction and Its Modular Properties --
Explicit Evaluations of the Rogers-Ramanujan Continued Fraction --
A Fragment on the Rogers-Ramanujan and Cubic Continued Fractions --
Rogers-Ramanujan Continued Fraction--Partitions, Lambert Series --
Finite Rogers-Ramanujan Continued Fractions --
Other q-continued Fractions --
Asymptotic Formulas for Continued Fractions --
Ramanujan's Continued Fraction for (q2; q3)[infinity]/(q; q3)[infinity] --
The Rogers-Fine Identity --
An Empirical Study of the Rogers-Ramanujan Identities --
Rogers-Ramanujan-Slater-Type Identities --
Partial Fractions --
Hadamard Products for Two q-Series --
Integrals of Theta Functions --
Incomplete Elliptic Integrals --
Infinite Integrals of q-Products --
Modular Equations in Ramanujan's Lost Notebook --
Fragments on Lambert Series.
Responsibility: George E. Andrews, Bruce C. Berndt.

Abstract:

In the library at Trinity College, Cambridge in 1976, George Andrews of Pennsylvania State University discovered a sheaf of pages in the handwriting of Srinivasa Ramanujan. Soon designated as  Read more...

Reviews

Editorial reviews

Publisher Synopsis

From the reviews: "The 'lost notebook' was in fact a 138-page manuscript found in materials from the estate of G.N. Watson. The manuscript, written in 'Ramanujan's distinctive handwriting', contained Read more...

 
User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/64552624> # Ramanujan's lost notebook. Part I
    a schema:MediaObject, schema:CreativeWork, schema:Book ;
    library:oclcnum "64552624" ;
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/nyu> ;
    library:placeOfPublication <http://dbpedia.org/resource/London> ; # London
    library:placeOfPublication <http://dbpedia.org/resource/New_York_City> ; # New York
    schema:about <http://id.worldcat.org/fast/1012163> ; # Mathematics
    schema:about <http://dewey.info/class/510/e22/> ;
    schema:about <http://dewey.info/class/515.984/e22/> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/46106841#Topic/mathematics_reference> ; # MATHEMATICS--Reference
    schema:about <http://viaf.org/viaf/27132864> ; # Srinivasa Ramanujan Aiyangar
    schema:about <http://experiment.worldcat.org/entity/work/data/46106841#Topic/mathematics_essays> ; # MATHEMATICS--Essays
    schema:about <http://experiment.worldcat.org/entity/work/data/46106841#Topic/mathematics_pre_calculus> ; # MATHEMATICS--Pre-Calculus
    schema:bookFormat schema:EBook ;
    schema:contributor <http://viaf.org/viaf/94640019> ; # Bruce C. Berndt
    schema:creator <http://viaf.org/viaf/2537884> ; # George E. Andrews
    schema:datePublished "2005" ;
    schema:description "In the spring of 1976, George Andrews of Pennsylvania State University visited the library at Trinity College, Cambridge, to examine the papers of the late G.N. Watson. Among these papers, Andrews discovered a sheaf of 138 pages in the handwriting of Srinivasa Ramanujan. This manuscript was soon designated, "Ramanujan's lost notebook." Its discovery has frequently been deemed the mathematical equivalent of finding Beethoven's tenth symphony. The "lost notebook" contains considerable material on mock theta functions and so undoubtedly emanates from the last year of Ramanujan's life. It should be emphasized that the material on mock theta functions is perhaps Ramanujan's deepest work. Mathematicians are probably several decades away from a complete understanding of those functions.; More than half of the material in the book is on q-series, including mock theta functions; the remaining part deals with theta function identities, modular equations, incomplete elliptic integrals of the first kind and other integrals of theta functions, Eisenstein series, particular values of theta functions, the Rogers-Ramanujan continued fraction, other q-continued fractions, other integrals, and parts of Hecke's theory of modular forms."@en ;
    schema:description "The Rogers-Ramanujan Continued Fraction and Its Modular Properties -- Explicit Evaluations of the Rogers-Ramanujan Continued Fraction -- A Fragment on the Rogers-Ramanujan and Cubic Continued Fractions -- Rogers-Ramanujan Continued Fraction--Partitions, Lambert Series -- Finite Rogers-Ramanujan Continued Fractions -- Other q-continued Fractions -- Asymptotic Formulas for Continued Fractions -- Ramanujan's Continued Fraction for (q2; q3)[infinity]/(q; q3)[infinity] -- The Rogers-Fine Identity -- An Empirical Study of the Rogers-Ramanujan Identities -- Rogers-Ramanujan-Slater-Type Identities -- Partial Fractions -- Hadamard Products for Two q-Series -- Integrals of Theta Functions -- Incomplete Elliptic Integrals -- Infinite Integrals of q-Products -- Modular Equations in Ramanujan's Lost Notebook -- Fragments on Lambert Series."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/46106841> ;
    schema:inLanguage "en" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/60320109> ;
    schema:name "Ramanujan's lost notebook. Part I"@en ;
    schema:productID "64552624" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/64552624#PublicationEvent/new_york_london_springer_2005> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/46106841#Agent/springer> ; # Springer
    schema:url <http://www.myilibrary.com?id=30834> ;
    schema:url <http://www.myilibrary.com?id=30834&ref=toc> ;
    schema:url <http://dx.doi.org/10.1007/0-387-28124-X> ;
    schema:url <http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=146499> ;
    schema:url <http://link.springer.com/openurl?genre=book&isbn=978-0-387-25529-3> ;
    schema:workExample <http://worldcat.org/isbn/9780387281247> ;
    schema:workExample <http://worldcat.org/isbn/9781280308345> ;
    schema:workExample <http://dx.doi.org/10.1007/0-387-28124-X> ;
    schema:workExample <http://worldcat.org/isbn/9780387255293> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/64552624> ;
    .


Related Entities

<http://dbpedia.org/resource/London> # London
    a schema:Place ;
    schema:name "London" ;
    .

<http://dbpedia.org/resource/New_York_City> # New York
    a schema:Place ;
    schema:name "New York" ;
    .

<http://experiment.worldcat.org/entity/work/data/46106841#Topic/mathematics_essays> # MATHEMATICS--Essays
    a schema:Intangible ;
    schema:name "MATHEMATICS--Essays"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/46106841#Topic/mathematics_pre_calculus> # MATHEMATICS--Pre-Calculus
    a schema:Intangible ;
    schema:name "MATHEMATICS--Pre-Calculus"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/46106841#Topic/mathematics_reference> # MATHEMATICS--Reference
    a schema:Intangible ;
    schema:name "MATHEMATICS--Reference"@en ;
    .

<http://id.worldcat.org/fast/1012163> # Mathematics
    a schema:Intangible ;
    schema:name "Mathematics"@en ;
    .

<http://viaf.org/viaf/2537884> # George E. Andrews
    a schema:Person ;
    schema:birthDate "1938" ;
    schema:familyName "Andrews" ;
    schema:givenName "George E." ;
    schema:name "George E. Andrews" ;
    .

<http://viaf.org/viaf/27132864> # Srinivasa Ramanujan Aiyangar
    a schema:Person ;
    schema:birthDate "1887" ;
    schema:deathDate "1920" ;
    schema:familyName "Ramanujan Aiyangar" ;
    schema:givenName "Srinivasa" ;
    schema:name "Srinivasa Ramanujan Aiyangar" ;
    .

<http://viaf.org/viaf/94640019> # Bruce C. Berndt
    a schema:Person ;
    schema:birthDate "1939" ;
    schema:familyName "Berndt" ;
    schema:givenName "Bruce C." ;
    schema:name "Bruce C. Berndt" ;
    .

<http://worldcat.org/isbn/9780387255293>
    a schema:ProductModel ;
    schema:isbn "038725529X" ;
    schema:isbn "9780387255293" ;
    .

<http://worldcat.org/isbn/9780387281247>
    a schema:ProductModel ;
    schema:isbn "038728124X" ;
    schema:isbn "9780387281247" ;
    .

<http://worldcat.org/isbn/9781280308345>
    a schema:ProductModel ;
    schema:isbn "1280308346" ;
    schema:isbn "9781280308345" ;
    .

<http://www.worldcat.org/oclc/60320109>
    a schema:CreativeWork ;
    rdfs:label "Ramanujan's lost notebook. Part I." ;
    schema:description "Print version:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/64552624> ; # Ramanujan's lost notebook. Part I
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.