omitir hasta el contenido
Random Fields on the Sphere : Representation, Limit Theorems and Cosmological Applications. Ver este material de antemano
CerrarVer este material de antemano
Chequeando…

Random Fields on the Sphere : Representation, Limit Theorems and Cosmological Applications.

Autor: Domenico Marinucci; Giovanni Peccati
Editorial: Cambridge : Cambridge University Press, 2011.
Serie: London Mathematical Society Lecture Note Series, 389.
Edición/Formato:   Libro-e : Documento : Inglés (eng)Ver todas las ediciones y todos los formatos
Base de datos:WorldCat
Resumen:
Reviews recent developments in the analysis of isotropic spherical random fields, with a view towards applications in cosmology.
Calificación:

(todavía no calificado) 0 con reseñas - Ser el primero.

Temas
Más materiales como éste

 

Encontrar un ejemplar en línea

Enlaces a este material

Encontrar un ejemplar en la biblioteca

&AllPage.SpinnerRetrieving; Encontrando bibliotecas que tienen este material…

Detalles

Género/Forma: Electronic books
Formato físico adicional: Print version:
Marinucci, Domenico.
Random Fields on the Sphere : Representation, Limit Theorems and Cosmological Applications.
Cambridge : Cambridge University Press, ©2011
Tipo de material: Documento, Recurso en Internet
Tipo de documento: Recurso en Internet, Archivo de computadora
Todos autores / colaboradores: Domenico Marinucci; Giovanni Peccati
ISBN: 9781139117487 1139117483 1283296179 9781283296175 9780511751677 0511751672 9781139128148 1139128140 1139115316 9781139115315
Número OCLC: 769341761
Notas: 7.6.1 Convolutions as mixed states.
Descripción: 1 online resource (355 pages).
Contenido: Cover; Title; Copyright; Contents; Dedication; Preface; 1 Introduction; 1.1 Overview; 1.2 Cosmological motivations; 1.3 Mathematical framework; 1.4 Plan of the book; 2 Background Results in Representation Theory; 2.1 Introduction; 2.2 Preliminary remarks; 2.3 Groups: basic definitions; 2.3.1 First definitions and examples; 2.3.2 Cosets and quotients; 2.3.3 Actions; 2.4 Representations of compact groups; 2.4.1 Basic definitions; 2.4.2 Group representations and Schur Lemma; 2.4.3 Direct sum and tensor product representations; 2.4.4 Orthogonality relations; 2.5 The Peter-Weyl Theorem. 3 Representations of SO(3) and Harmonic Analysis on S23.1 Introduction; 3.2 Euler angles; 3.2.1 Euler angles for SU(2); 3.2.2 Euler angles for SO(3); 3.3 Wigner's D matrices; 3.3.1 A family of unitary representations of SU(2); 3.3.2 Expressions in terms of Euler angles and irreducibility; 3.3.3 Further properties; 3.3.4 The dual of SO(3); 3.4 Spherical harmonics and Fourier analysis on S2; 3.4.1 Spherical harmonics and Wigner's Dl matrices; 3.4.2 Some properties of spherical harmonics; 3.4.3 An alternative characterization of spherical harmonics; 3.5 The Clebsch-Gordan coefficients. 3.5.1 Clebsch-Gordan matrices3.5.2 Integrals of multiple spherical harmonics; 3.5.3 Wigner 3 j coefficients; 4 Background Results in Probability and Graphical Methods; 4.1 Introduction; 4.2 Brownian motion and stochastic calculus; 4.3 Moments, cumulants and diagram formulae; 4.4 The simplified method of moments on Wiener chaos; 4.4.1 Real kernels; 4.4.2 Further results on complex kernels; 4.5 The graphical method for Wigner coefficients; 4.5.1 From diagrams to graphs; 4.5.2 Further notation; 4.5.3 First example: sums of squares; 4.5.4 Cliques and Wigner 6 j coefficients. 4.5.5 Rule n. 1: loops are zero4.5.6 Rule n. 2: paired sums are one; 4.5.7 Rule n. 3: 2-loops can be cut, and leave a factor; 4.5.8 Rule n. 4: three-loops can be cut, and leave a clique; 5 Spectral Representations; 5.1 Introduction; 5.2 The Stochastic Peter-Weyl Theorem; 5.2.1 General statements; 5.2.2 Decompositions on the sphere; 5.3 Weakly stationary random fields in Rm; 5.4 Stationarity and weak isotropy in R3; 6 Characterizations of Isotropy; 6.1 Introduction; 6.2 First example: the cyclic group; 6.3 The spherical harmonics coefficients; 6.4 Group representations and polyspectra. 6.5 Angular polyspectra and the structure of?l1 ... ln6.5.1 Spectra of strongly isotropic fields; 6.5.2 The structure of?l1 ... ln; 6.6 Reduced polyspectra of arbitrary orders; 6.7 Some examples; 7 Limit Theorems for Gaussian Subordinated Random Fields; 7.1 Introduction; 7.2 First example: the circle; 7.3 Preliminaries on Gaussian-subordinated fields; 7.4 High-frequency CLTs; 7.4.1 Hermite subordination; 7.5 Convolutions and random walks; 7.5.1 Convolutions on?SO (3); 7.5.2 The cases q = 2 and q = 3; 7.5.3 The case of a general q: results and conjectures; 7.6 Further remarks.
Título de la serie: London Mathematical Society Lecture Note Series, 389.
Más información:

Resumen:

Reviews recent developments in the analysis of isotropic spherical random fields, with a view towards applications in cosmology.  Leer más

Reseñas

Reseñas editoriales

Resumen de la editorial

"The methods described in the book shed light on extremely important issues in astrophysics, cosmology, and fundamental physics. Most of the results of the book were first proved by the authors. Leer más

 
Reseñas contribuidas por usuarios
Recuperando reseñas de GoodReads…
Recuperando reseñas de DOGObooks…

Etiquetas

Ser el primero.
Confirmar este pedido

Ya ha pedido este material. Escoja OK si desea procesar el pedido de todos modos.

Datos enlazados


Primary Entity

<http://www.worldcat.org/oclc/769341761> # Random Fields on the Sphere : Representation, Limit Theorems and Cosmological Applications.
    a schema:Book, schema:CreativeWork, schema:MediaObject ;
   library:oclcnum "769341761" ;
   library:placeOfPublication <http://id.loc.gov/vocabulary/countries/enk> ;
   library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/836169620#Place/cambridge> ; # Cambridge
   schema:about <http://id.worldcat.org/fast/1089800> ; # Random fields
   schema:about <http://experiment.worldcat.org/entity/work/data/836169620#Topic/mathematics_probability_&_statistics_general> ; # MATHEMATICS--Probability & Statistics--General
   schema:about <http://id.loc.gov/authorities/subjects/sh85126596> ; # Spherical harmonics
   schema:about <http://id.worldcat.org/fast/1129683> ; # Spherical harmonics
   schema:about <http://experiment.worldcat.org/entity/work/data/836169620#Topic/science> ; # Science
   schema:about <http://experiment.worldcat.org/entity/work/data/836169620#Topic/science_cosmology> ; # SCIENCE--Cosmology
   schema:about <http://experiment.worldcat.org/entity/work/data/836169620#Topic/cosmology_statistical_methods> ; # Cosmology--Statistical methods
   schema:about <http://id.loc.gov/authorities/subjects/sh85029280> ; # Compact groups
   schema:about <http://dewey.info/class/523.1015195/> ;
   schema:about <http://id.worldcat.org/fast/871287> ; # Compact groups
   schema:about <http://experiment.worldcat.org/entity/work/data/836169620#Topic/mathematics> ; # Mathematics
   schema:about <http://id.loc.gov/authorities/subjects/sh85111347> ; # Random fields
   schema:about <http://experiment.worldcat.org/entity/work/data/836169620#Topic/astronomy> ; # Astronomy
   schema:bookFormat schema:EBook ;
   schema:contributor <http://viaf.org/viaf/163967239> ; # Giovanni Peccati
   schema:creator <http://experiment.worldcat.org/entity/work/data/836169620#Person/marinucci_domenico> ; # Domenico Marinucci
   schema:datePublished "2011" ;
   schema:description "Reviews recent developments in the analysis of isotropic spherical random fields, with a view towards applications in cosmology."@en ;
   schema:description "Cover; Title; Copyright; Contents; Dedication; Preface; 1 Introduction; 1.1 Overview; 1.2 Cosmological motivations; 1.3 Mathematical framework; 1.4 Plan of the book; 2 Background Results in Representation Theory; 2.1 Introduction; 2.2 Preliminary remarks; 2.3 Groups: basic definitions; 2.3.1 First definitions and examples; 2.3.2 Cosets and quotients; 2.3.3 Actions; 2.4 Representations of compact groups; 2.4.1 Basic definitions; 2.4.2 Group representations and Schur Lemma; 2.4.3 Direct sum and tensor product representations; 2.4.4 Orthogonality relations; 2.5 The Peter-Weyl Theorem."@en ;
   schema:exampleOfWork <http://worldcat.org/entity/work/id/836169620> ;
   schema:genre "Electronic books"@en ;
   schema:image <http://assets.cambridge.org/97805211/75616/cover/9780521175616.jpg> ;
   schema:inLanguage "en" ;
   schema:isPartOf <http://experiment.worldcat.org/entity/work/data/836169620#Series/london_mathematical_society_lecture_note_series_389> ; # London Mathematical Society Lecture Note Series, 389.
   schema:isSimilarTo <http://worldcat.org/entity/work/data/836169620#CreativeWork/random_fields_on_the_sphere_representation_limit_theorems_and_cosmological_applications> ;
   schema:name "Random Fields on the Sphere : Representation, Limit Theorems and Cosmological Applications."@en ;
   schema:productID "769341761" ;
   schema:publication <http://www.worldcat.org/title/-/oclc/769341761#PublicationEvent/cambridge_cambridge_university_press_2011> ;
   schema:publisher <http://experiment.worldcat.org/entity/work/data/836169620#Agent/cambridge_university_press> ; # Cambridge University Press
   schema:url <http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=399346> ;
   schema:url <http://dx.doi.org/10.1017/CBO9780511751677> ;
   schema:url <http://www.myilibrary.com?id=329617> ;
   schema:url <http://public.eblib.com/choice/publicfullrecord.aspx?p=775025> ;
   schema:url <http://site.ebrary.com/id/10502831> ;
   schema:url <http://0-dx.doi.org.oasis.unisa.ac.za/10.1017/CBO9780511751677> ;
   schema:url <http://www.myilibrary.com?id=329617&ref=toc> ;
   schema:workExample <http://worldcat.org/isbn/9781139115315> ;
   schema:workExample <http://worldcat.org/isbn/9781139128148> ;
   schema:workExample <http://worldcat.org/isbn/9781283296175> ;
   schema:workExample <http://worldcat.org/isbn/9781139117487> ;
   schema:workExample <http://worldcat.org/isbn/9780511751677> ;
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/769341761> ;
    .


Related Entities

<http://0-dx.doi.org.oasis.unisa.ac.za/10.1017/CBO9780511751677>
   rdfs:comment "View full-text e-book at Cambridge.
Access restricted to Unisa staff and students
" ;
    .

<http://experiment.worldcat.org/entity/work/data/836169620#Agent/cambridge_university_press> # Cambridge University Press
    a bgn:Agent ;
   schema:name "Cambridge University Press" ;
    .

<http://experiment.worldcat.org/entity/work/data/836169620#Person/marinucci_domenico> # Domenico Marinucci
    a schema:Person ;
   schema:familyName "Marinucci" ;
   schema:givenName "Domenico" ;
   schema:name "Domenico Marinucci" ;
    .

<http://experiment.worldcat.org/entity/work/data/836169620#Series/london_mathematical_society_lecture_note_series_389> # London Mathematical Society Lecture Note Series, 389.
    a bgn:PublicationSeries ;
   schema:hasPart <http://www.worldcat.org/oclc/769341761> ; # Random Fields on the Sphere : Representation, Limit Theorems and Cosmological Applications.
   schema:name "London Mathematical Society Lecture Note Series, 389." ;
   schema:name "London Mathematical Society Lecture Note Series, 389 ;" ;
    .

<http://experiment.worldcat.org/entity/work/data/836169620#Topic/mathematics_probability_&_statistics_general> # MATHEMATICS--Probability & Statistics--General
    a schema:Intangible ;
   schema:name "MATHEMATICS--Probability & Statistics--General"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/836169620#Topic/science_cosmology> # SCIENCE--Cosmology
    a schema:Intangible ;
   schema:name "SCIENCE--Cosmology"@en ;
    .

<http://id.loc.gov/authorities/subjects/sh85029280> # Compact groups
    a schema:Intangible ;
   schema:name "Compact groups"@en ;
    .

<http://id.loc.gov/authorities/subjects/sh85111347> # Random fields
    a schema:Intangible ;
   schema:name "Random fields"@en ;
    .

<http://id.loc.gov/authorities/subjects/sh85126596> # Spherical harmonics
    a schema:Intangible ;
   schema:name "Spherical harmonics"@en ;
    .

<http://id.worldcat.org/fast/1089800> # Random fields
    a schema:Intangible ;
   schema:name "Random fields"@en ;
    .

<http://id.worldcat.org/fast/1129683> # Spherical harmonics
    a schema:Intangible ;
   schema:name "Spherical harmonics"@en ;
    .

<http://id.worldcat.org/fast/871287> # Compact groups
    a schema:Intangible ;
   schema:name "Compact groups"@en ;
    .

<http://viaf.org/viaf/163967239> # Giovanni Peccati
    a schema:Person ;
   schema:birthDate "1975" ;
   schema:familyName "Peccati" ;
   schema:givenName "Giovanni" ;
   schema:name "Giovanni Peccati" ;
    .

<http://worldcat.org/entity/work/data/836169620#CreativeWork/random_fields_on_the_sphere_representation_limit_theorems_and_cosmological_applications>
    a schema:CreativeWork ;
   rdfs:label "Random Fields on the Sphere : Representation, Limit Theorems and Cosmological Applications." ;
   schema:description "Print version:" ;
   schema:isSimilarTo <http://www.worldcat.org/oclc/769341761> ; # Random Fields on the Sphere : Representation, Limit Theorems and Cosmological Applications.
    .

<http://worldcat.org/isbn/9780511751677>
    a schema:ProductModel ;
   schema:isbn "0511751672" ;
   schema:isbn "9780511751677" ;
    .

<http://worldcat.org/isbn/9781139115315>
    a schema:ProductModel ;
   schema:isbn "1139115316" ;
   schema:isbn "9781139115315" ;
    .

<http://worldcat.org/isbn/9781139117487>
    a schema:ProductModel ;
   schema:isbn "1139117483" ;
   schema:isbn "9781139117487" ;
    .

<http://worldcat.org/isbn/9781139128148>
    a schema:ProductModel ;
   schema:isbn "1139128140" ;
   schema:isbn "9781139128148" ;
    .

<http://worldcat.org/isbn/9781283296175>
    a schema:ProductModel ;
   schema:isbn "1283296179" ;
   schema:isbn "9781283296175" ;
    .

<http://www.worldcat.org/title/-/oclc/769341761>
    a genont:InformationResource, genont:ContentTypeGenericResource ;
   schema:about <http://www.worldcat.org/oclc/769341761> ; # Random Fields on the Sphere : Representation, Limit Theorems and Cosmological Applications.
   schema:dateModified "2017-03-31" ;
   void:inDataset <http://purl.oclc.org/dataset/WorldCat> ;
    .


Content-negotiable representations

Cerrar ventana

Inicie una sesión con WorldCat 

¿No tienes una cuenta? Puede fácilmente crear una cuenta gratuita.