skip to content
Recent advances in reinforcement learning Preview this item
ClosePreview this item
Checking...

Recent advances in reinforcement learning

Author: Leslie Pack Kaelbling
Publisher: Boston : Kluwer Academic, ©1996.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Summary:
Recent Advances in Reinforcement Learning addresses current research in an exciting area that is gaining a great deal of popularity in the Artificial Intelligence and Neural Network communities. Reinforcement learning has become a primary paradigm of machine learning. It applies to problems in which an agent (such as a robot, a process controller, or an information-retrieval engine) has to learn how to behave given  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Print version:
Recent advances in reinforcement learning.
Boston : Kluwer Academic, ©1996
(DLC) 96003971
(OCoLC)34245430
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Leslie Pack Kaelbling
ISBN: 0585336563 9780585336565
OCLC Number: 45843094
Description: 1 online resource (290 pages) : illustrations
Contents: Editorial; T.G. Dietterich. Introduction; L.P. Kaelbling. Efficient Reinforcement Learning Through Symbiotic Evolution; D.E. Moriarty, R. Mikkulainen. Linear Least-Squares Algorithms for Temporal Difference Learning; S.J. Bradtke, A.G. Barto. Feature-Based Methods for Large Scale Dynamic Programming; J.N. Tsitsiklis, B. Van Roy. On the Worst-Case Analysis of Temporal-Difference Learning Algorithms; R.E. Schapire, M.K. Warmuth. Reinforcement Learning with Replacing Eligibility Traces; S.P. Singh, R.S. Sutton. Average Reward Reinforcement Learning: Foundations, Algorithms, and Empirical Results; S. Mahadevan. The Loss from Imperfect Value Functions in Expectation-Based and Minimax-Based Tasks; M. Heger. The Effect of Representation and Knowledge on Goal-Directed Exploration with Reinforcement-Learning Algorithms; S. Koenig, R.G. Simmons. Creating Advice-Taking Reinforcement Learners; R. Maclin, J.W. Shavlik. Technical Note: Incremental Multi-Step Q-Learning; J. Peng, R.J. Williams.
Other Titles: Machine learning.
Responsibility: edited by Leslie Pack Kaelbling.

Abstract:

Recent Advances in Reinforcement Learning addresses current research in an exciting area that is gaining a great deal of popularity in the Artificial Intelligence and Neural Network communities.  Read more...

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/45843094> # Recent advances in reinforcement learning
    a schema:MediaObject, schema:Book, schema:CreativeWork ;
   library:oclcnum "45843094" ;
   library:placeOfPublication <http://dbpedia.org/resource/Boston> ; # Boston
   library:placeOfPublication <http://id.loc.gov/vocabulary/countries/mau> ;
   schema:about <http://experiment.worldcat.org/entity/work/data/766878642#Topic/inteligencia_artificial_computacao> ; # Inteligencia artificial (computacao)
   schema:about <http://id.worldcat.org/fast/1732553> ; # Reinforcement learning
   schema:about <http://dewey.info/class/006.31/e20/> ;
   schema:about <http://experiment.worldcat.org/entity/work/data/766878642#Topic/computers_general> ; # COMPUTERS--General
   schema:bookFormat schema:EBook ;
   schema:contributor <http://viaf.org/viaf/9946996> ; # Leslie Pack Kaelbling
   schema:copyrightYear "1996" ;
   schema:datePublished "1996" ;
   schema:description "Recent Advances in Reinforcement Learning addresses current research in an exciting area that is gaining a great deal of popularity in the Artificial Intelligence and Neural Network communities. Reinforcement learning has become a primary paradigm of machine learning. It applies to problems in which an agent (such as a robot, a process controller, or an information-retrieval engine) has to learn how to behave given only information about the success of its current actions. This book is a collection of important papers that address topics including the theoretical foundations of dynamic programming approaches, the role of prior knowledge, and methods for improving performance of reinforcement-learning techniques. These papers build on previous work and will form an important resource for students and researchers in the area. Recent Advances in Reinforcement Learning is an edited volume of peer-reviewed original research comprising twelve invited contributions by leading researchers. This research work has also been published as a special issue of Machine Learning (Volume 22, Numbers 1, 2 and 3)."@en ;
   schema:exampleOfWork <http://worldcat.org/entity/work/id/766878642> ;
   schema:genre "Electronic books"@en ;
   schema:hasPart <http://experiment.worldcat.org/entity/work/data/766878642#CreativeWork/machine_learning> ; # Machine learning.
   schema:inLanguage "en" ;
   schema:isSimilarTo <http://www.worldcat.org/oclc/34245430> ;
   schema:name "Recent advances in reinforcement learning"@en ;
   schema:productID "45843094" ;
   schema:publication <http://www.worldcat.org/title/-/oclc/45843094#PublicationEvent/boston_kluwer_academic_1996> ;
   schema:publisher <http://experiment.worldcat.org/entity/work/data/766878642#Agent/kluwer_academic> ; # Kluwer Academic
   schema:url <http://site.ebrary.com/id/10192022> ;
   schema:url <https://elib.southwest.tn.edu:3443/login?url=http://www.netlibrary.com/urlapi.asp?action=summary&v=1&bookid=39531> ;
   schema:url <http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=39531> ;
   schema:url <http://dx.doi.org/10.1007/b102434> ;
   schema:url <http://rave.ohiolink.edu/ebooks/ebc/9780585336565> ;
   schema:url <http://www.myilibrary.com?id=104524> ;
   schema:url <https://login.lacollegelibrary.idm.oclc.org/login?url=http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&AN=39531> ;
   schema:workExample <http://worldcat.org/isbn/9780585336565> ;
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/45843094> ;
    .


Related Entities

<http://dbpedia.org/resource/Boston> # Boston
    a schema:Place ;
   schema:name "Boston" ;
    .

<http://experiment.worldcat.org/entity/work/data/766878642#Agent/kluwer_academic> # Kluwer Academic
    a bgn:Agent ;
   schema:name "Kluwer Academic" ;
    .

<http://experiment.worldcat.org/entity/work/data/766878642#Topic/computers_general> # COMPUTERS--General
    a schema:Intangible ;
   schema:name "COMPUTERS--General"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/766878642#Topic/inteligencia_artificial_computacao> # Inteligencia artificial (computacao)
    a schema:Intangible ;
   schema:name "Inteligencia artificial (computacao)"@en ;
    .

<http://id.worldcat.org/fast/1732553> # Reinforcement learning
    a schema:Intangible ;
   schema:name "Reinforcement learning"@en ;
    .

<http://viaf.org/viaf/9946996> # Leslie Pack Kaelbling
    a schema:Person ;
   schema:familyName "Kaelbling" ;
   schema:givenName "Leslie Pack" ;
   schema:name "Leslie Pack Kaelbling" ;
    .

<http://worldcat.org/isbn/9780585336565>
    a schema:ProductModel ;
   schema:isbn "0585336563" ;
   schema:isbn "9780585336565" ;
    .

<http://www.worldcat.org/oclc/34245430>
    a schema:CreativeWork ;
   rdfs:label "Recent advances in reinforcement learning." ;
   schema:description "Print version:" ;
   schema:isSimilarTo <http://www.worldcat.org/oclc/45843094> ; # Recent advances in reinforcement learning
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.