skip to content
Rectifiable measures, square functions involving densities, and the Cauchy transform Preview this item
ClosePreview this item
Checking...

Rectifiable measures, square functions involving densities, and the Cauchy transform

Author: Xavier Tolsa; American Mathematical Society,
Publisher: Providence, Rhode Island : American Mathematical Society, 2017. ©2016
Series: Memoirs of the American Mathematical Society, no. 1158.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Summary:
"This monograph is devoted to the proof of two related results. The first one asserts that if is a Radon measure in satisfyingfor -a.e. , then is rectifiable. Since the converse implication is already known to hold, this yields the following characterization of rectifiable sets: a set with finite -dimensional Hausdorff measure is rectifiable if and only if Ĥ1x2E The second result of the monograph deals with the  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: Xavier Tolsa; American Mathematical Society,
ISBN: 9781470436056 1470436051
OCLC Number: 965547797
Notes: “Volume 245, Number 1158 (third of 6 numbers), January 2017”
Description: 1 online resource (v, 130 pages) : illustrations.
Contents: Chapter 1. Introduction Chapter 2. Preliminaries Chapter 3. A compactness argument Chapter 4. The dyadic lattice of cells with small boundaries Chapter 5. The Main Lemma Chapter 6. The stopping cells for the proofof Main Lemma 5.1 Chapter 7. The measure $\tilde \mu $ and some estimatesabout its flatness Chapter 8. The measure of the cells from $\BCF $, $\LD $, $\BSD $and $\BCG $ Chapter 9. The new families of cells $\bsb $, $\nterm $, $\ngood $, $\nqgood $ and $\nreg $ Chapter 10. The approximating curves $\Gamma ^k$ Chapter 11. The small measure $\tilde \mu $ of the cells from $\bsb $ Chapter 12. The approximating measure $\nu ^k$ on $\Gamma ^k_ex$ Chapter 13. Square function estimates for $\nu ^k$ Chapter 14. The good measure $\sigma ^k$ on $\Gamma ^k$ Chapter 15. The $L^2(\sigma ^k)$ norm of the density of $\nu ^k$ with respect to $\sigma ^k$ Chapter 16. The end of the proof of the Main Lemma 5.1 Chapter 17. Proof of Theorem 1.3: Boundedness of $T_\mu $ implies boundedness of the Cauchy transform Chapter 18. Some Calderón-Zygmund theory for $T_\mu $ Chapter 19. Proof of Theorem 1.3: Boundedness of the Cauchy transform implies boundedness of $T_\mu $
Series Title: Memoirs of the American Mathematical Society, no. 1158.
Responsibility: Xavier Tolsa.

Abstract:

Volume 245, number 1158 (third of 6 numbers), January 2017.  Read more...

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/965547797> # Rectifiable measures, square functions involving densities, and the Cauchy transform
    a schema:CreativeWork, schema:MediaObject, schema:Book ;
    library:oclcnum "965547797" ;
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/riu> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/3899039025#Topic/transformations_mathematics> ; # Transformations (Mathematics)
    schema:about <http://experiment.worldcat.org/entity/work/data/3899039025#Topic/cauchy_transform> ; # Cauchy transform
    schema:about <http://dewey.info/class/515.42/e23/> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/3899039025#Topic/radon_measures> ; # Radon measures
    schema:about <http://experiment.worldcat.org/entity/work/data/3899039025#Topic/measure_theory> ; # Measure theory
    schema:author <http://experiment.worldcat.org/entity/work/data/3899039025#Person/tolsa_xavier> ; # Xavier Tolsa
    schema:bookFormat schema:EBook ;
    schema:copyrightYear "2016" ;
    schema:datePublished "2017" ;
    schema:description ""This monograph is devoted to the proof of two related results. The first one asserts that if is a Radon measure in satisfyingfor -a.e. , then is rectifiable. Since the converse implication is already known to hold, this yields the following characterization of rectifiable sets: a set with finite -dimensional Hausdorff measure is rectifiable if and only if Ĥ1x2E The second result of the monograph deals with the relationship between the above square function in the complex plane and the Cauchy transform . Assuming that has linear growth, it is proved that is bounded in if and only iffor every square ." --Publisher website."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/3899039025> ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/3899039025#Series/memoirs_of_the_american_mathematical_society> ; # Memoirs of the American Mathematical Society ;
    schema:isPartOf <http://worldcat.org/issn/0065-9266> ; # Memoirs of the American Mathematical Society,
    schema:name "Rectifiable measures, square functions involving densities, and the Cauchy transform"@en ;
    schema:productID "965547797" ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/3899039025#Organization/american_mathematical_society> ; # American Mathematical Society,
    schema:url <http://public.eblib.com/choice/PublicFullRecord.aspx?p=4908274> ;
    schema:url <http://library.icc.edu/login?url=http://ebookcentral.proquest.com/lib/illcencol-ebooks/detail.action?docID=4908274> ;
    schema:url <http://www.ams.org/memo/1158/> ;
    schema:url <https://doi.org/10.1090/memo/1158> ;
    schema:workExample <http://worldcat.org/isbn/9781470436056> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/965547797> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/3899039025#Organization/american_mathematical_society> # American Mathematical Society,
    a schema:Organization ;
    schema:name "American Mathematical Society," ;
    .

<http://experiment.worldcat.org/entity/work/data/3899039025#Person/tolsa_xavier> # Xavier Tolsa
    a schema:Person ;
    schema:familyName "Tolsa" ;
    schema:givenName "Xavier" ;
    schema:name "Xavier Tolsa" ;
    .

<http://experiment.worldcat.org/entity/work/data/3899039025#Series/memoirs_of_the_american_mathematical_society> # Memoirs of the American Mathematical Society ;
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/965547797> ; # Rectifiable measures, square functions involving densities, and the Cauchy transform
    schema:name "Memoirs of the American Mathematical Society ;" ;
    .

<http://experiment.worldcat.org/entity/work/data/3899039025#Topic/transformations_mathematics> # Transformations (Mathematics)
    a schema:Intangible ;
    schema:name "Transformations (Mathematics)"@en ;
    .

<http://worldcat.org/isbn/9781470436056>
    a schema:ProductModel ;
    schema:isbn "1470436051" ;
    schema:isbn "9781470436056" ;
    .

<http://worldcat.org/issn/0065-9266> # Memoirs of the American Mathematical Society,
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/965547797> ; # Rectifiable measures, square functions involving densities, and the Cauchy transform
    schema:issn "0065-9266" ;
    schema:name "Memoirs of the American Mathematical Society," ;
    .

<http://www.worldcat.org/title/-/oclc/965547797>
    a genont:InformationResource, genont:ContentTypeGenericResource ;
    schema:about <http://www.worldcat.org/oclc/965547797> ; # Rectifiable measures, square functions involving densities, and the Cauchy transform
    schema:dateModified "2018-06-08" ;
    void:inDataset <http://purl.oclc.org/dataset/WorldCat> ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.