skip to content
Reduction of Complexity by Optimal Driving Forces. Preview this item
ClosePreview this item
Checking...

Reduction of Complexity by Optimal Driving Forces.

Author: Tom Meyer; Alfred Hubler; Norman Packard; ILLINOIS UNIV AT URBANA CENTER FOR COMPLEX SYSTEMS RESEARCH.
Publisher: Ft. Belvoir : Defense Technical Information Center, 21 JUN 1989.
Edition/Format:   Print book : English
Database:WorldCat
Summary:
In general nonlinear waves are not stable in a chain of finite length. Since they have a finite lifetime, it is important to investigate the production of nonlinear waves, e.g. the production of solitons. A general feature of nonlinear waves is the amplitude frequency coupling, which causes the excitation by sinusoidal driving forces to be very inefficient. The response is usually very complex in addition. We  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Document Type: Book
All Authors / Contributors: Tom Meyer; Alfred Hubler; Norman Packard; ILLINOIS UNIV AT URBANA CENTER FOR COMPLEX SYSTEMS RESEARCH.
OCLC Number: 227776897
Notes: Technical rept.
Description: 5 pages ; 23 x 29 cm

Abstract:

In general nonlinear waves are not stable in a chain of finite length. Since they have a finite lifetime, it is important to investigate the production of nonlinear waves, e.g. the production of solitons. A general feature of nonlinear waves is the amplitude frequency coupling, which causes the excitation by sinusoidal driving forces to be very inefficient. The response is usually very complex in addition. We present a method to calculate special aperiodic driving forces, which generates nonlinear waves very efficiently. The response to these driving forces is very simple.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/227776897> # Reduction of Complexity by Optimal Driving Forces.
    a schema:CreativeWork, schema:Book ;
    library:oclcnum "227776897" ;
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/vau> ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/137450710#Place/ft_belvoir> ; # Ft. Belvoir
    schema:about <http://experiment.worldcat.org/entity/work/data/137450710#Topic/frequency> ; # Frequency
    schema:about <http://experiment.worldcat.org/entity/work/data/137450710#Topic/theoretical_mathematics> ; # Theoretical mathematics
    schema:about <http://experiment.worldcat.org/entity/work/data/137450710#Thing/nonlinear_oscillators> ; # NONLINEAR OSCILLATORS
    schema:about <http://experiment.worldcat.org/entity/work/data/137450710#Topic/waves> ; # Waves
    schema:about <http://experiment.worldcat.org/entity/work/data/137450710#Topic/life_span_biology> ; # Life span(biology)
    schema:about <http://experiment.worldcat.org/entity/work/data/137450710#Topic/solitons> ; # Solitons
    schema:about <http://experiment.worldcat.org/entity/work/data/137450710#Topic/production> ; # Production
    schema:about <http://experiment.worldcat.org/entity/work/data/137450710#Topic/coupling_interaction> ; # Coupling(interaction)
    schema:about <http://experiment.worldcat.org/entity/work/data/137450710#Topic/chains> ; # Chains
    schema:about <http://experiment.worldcat.org/entity/work/data/137450710#Topic/nonlinear_systems> ; # Nonlinear systems
    schema:about <http://experiment.worldcat.org/entity/work/data/137450710#Thing/solitons> ; # SOLITONS.
    schema:about <http://experiment.worldcat.org/entity/work/data/137450710#Topic/special_forces> ; # Special forces
    schema:about <http://experiment.worldcat.org/entity/work/data/137450710#Topic/amplitude> ; # Amplitude
    schema:bookFormat bgn:PrintBook ;
    schema:contributor <http://experiment.worldcat.org/entity/work/data/137450710#Person/meyer_tom> ; # Tom Meyer
    schema:contributor <http://experiment.worldcat.org/entity/work/data/137450710#Person/hubler_alfred> ; # Alfred Hubler
    schema:contributor <http://experiment.worldcat.org/entity/work/data/137450710#Person/packard_norman> ; # Norman Packard
    schema:contributor <http://experiment.worldcat.org/entity/work/data/137450710#Organization/illinois_univ_at_urbana_center_for_complex_systems_research> ; # ILLINOIS UNIV AT URBANA CENTER FOR COMPLEX SYSTEMS RESEARCH.
    schema:datePublished "1989" ;
    schema:datePublished "21 JUN 1989" ;
    schema:description "In general nonlinear waves are not stable in a chain of finite length. Since they have a finite lifetime, it is important to investigate the production of nonlinear waves, e.g. the production of solitons. A general feature of nonlinear waves is the amplitude frequency coupling, which causes the excitation by sinusoidal driving forces to be very inefficient. The response is usually very complex in addition. We present a method to calculate special aperiodic driving forces, which generates nonlinear waves very efficiently. The response to these driving forces is very simple."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/137450710> ;
    schema:inLanguage "en" ;
    schema:name "Reduction of Complexity by Optimal Driving Forces."@en ;
    schema:productID "227776897" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/227776897#PublicationEvent/ft_belvoir_defense_technical_information_center_21_jun_1989> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/137450710#Agent/defense_technical_information_center> ; # Defense Technical Information Center
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/227776897> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/137450710#Agent/defense_technical_information_center> # Defense Technical Information Center
    a bgn:Agent ;
    schema:name "Defense Technical Information Center" ;
    .

<http://experiment.worldcat.org/entity/work/data/137450710#Organization/illinois_univ_at_urbana_center_for_complex_systems_research> # ILLINOIS UNIV AT URBANA CENTER FOR COMPLEX SYSTEMS RESEARCH.
    a schema:Organization ;
    schema:name "ILLINOIS UNIV AT URBANA CENTER FOR COMPLEX SYSTEMS RESEARCH." ;
    .

<http://experiment.worldcat.org/entity/work/data/137450710#Person/hubler_alfred> # Alfred Hubler
    a schema:Person ;
    schema:familyName "Hubler" ;
    schema:givenName "Alfred" ;
    schema:name "Alfred Hubler" ;
    .

<http://experiment.worldcat.org/entity/work/data/137450710#Person/meyer_tom> # Tom Meyer
    a schema:Person ;
    schema:familyName "Meyer" ;
    schema:givenName "Tom" ;
    schema:name "Tom Meyer" ;
    .

<http://experiment.worldcat.org/entity/work/data/137450710#Person/packard_norman> # Norman Packard
    a schema:Person ;
    schema:familyName "Packard" ;
    schema:givenName "Norman" ;
    schema:name "Norman Packard" ;
    .

<http://experiment.worldcat.org/entity/work/data/137450710#Thing/nonlinear_oscillators> # NONLINEAR OSCILLATORS
    a schema:Thing ;
    schema:name "NONLINEAR OSCILLATORS" ;
    .

<http://experiment.worldcat.org/entity/work/data/137450710#Topic/coupling_interaction> # Coupling(interaction)
    a schema:Intangible ;
    schema:name "Coupling(interaction)"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/137450710#Topic/life_span_biology> # Life span(biology)
    a schema:Intangible ;
    schema:name "Life span(biology)"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/137450710#Topic/nonlinear_systems> # Nonlinear systems
    a schema:Intangible ;
    schema:name "Nonlinear systems"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/137450710#Topic/theoretical_mathematics> # Theoretical mathematics
    a schema:Intangible ;
    schema:name "Theoretical mathematics"@en ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.