skip to content
Regular and Stochastic Motion Preview this item
ClosePreview this item
Checking...

Regular and Stochastic Motion

Author: A J Lichtenberg; M A Lieberman
Publisher: New York, NY : Springer New York, 1983.
Series: Applied mathematical sciences (Springer-Verlag New York Inc.), 38.
Edition/Format:   eBook : Document : EnglishView all editions and formats
Summary:
This book treats stochastic motion in nonlinear oscillator systems. It describes a rapidly growing field of nonlinear mechanics with applications to a number of areas in science and engineering, including astronomy, plasma physics, statistical mechanics and hydrodynamics. The main em phasis is on intrinsic stochasticity in Hamiltonian systems, where the stochastic motion is generated by the dynamics itself and not  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Additional Physical Format: Print version:
Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: A J Lichtenberg; M A Lieberman
ISBN: 9781475742572 1475742576
OCLC Number: 851794304
Description: 1 online resource (xxi, 499 pages).
Contents: 1 Overview and Basic Concepts --
2 Canonical Perturbation Theory --
3 Mappings and Linear Stability --
4 Transition to Global Stochasticity --
5 Stochastic Motion and Diffusion --
6 Three or More Degrees of Freedom --
7 Dissipative Systems --
Appendix A --
Applications --
A.1. Planetary Motion --
A.2. Accelerators and Beams --
A.3. Charged Particle Confinement --
A.4. Charged Particle Heating --
A.S. Chemical Dynamics --
A.6. Quantum Systems --
Appendix B --
Hamiltonian Bifurcation Theory --
Author Index.
Series Title: Applied mathematical sciences (Springer-Verlag New York Inc.), 38.
Responsibility: by A.J. Lichtenberg, M.A. Lieberman.

Abstract:

This book treats stochastic motion in nonlinear oscillator systems. It describes a rapidly growing field of nonlinear mechanics with applications to a number of areas in science and engineering, including astronomy, plasma physics, statistical mechanics and hydrodynamics. The main em phasis is on intrinsic stochasticity in Hamiltonian systems, where the stochastic motion is generated by the dynamics itself and not by external noise. However, the effects of noise in modifying the intrinsic motion are also considered. A thorough introduction to chaotic motion in dissipative systems is given in the final chapter. Although the roots of the field are old, dating back to the last century when Poincare and others attempted to formulate a theory for nonlinear perturbations of planetary orbits, it was new mathematical results obtained in the 1960's, together with computational results obtained using high speed computers, that facilitated our new treatment of the subject. Since the new methods partly originated in mathematical advances, there have been two or three mathematical monographs exposing these developments. However, these monographs employ methods and language that are not readily accessible to scientists and engineers, and also do not give explicit tech niques for making practical calculations. In our treatment of the material, we emphasize physical insight rather than mathematical rigor. We present practical methods for describing the motion, for determining the transition from regular to stochastic behavior, and for characterizing the stochasticity. We rely heavily on numerical computations to illustrate the methods and to validate them.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.

Similar Items

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/851794304> # Regular and Stochastic Motion
    a schema:Book, schema:CreativeWork, schema:MediaObject ;
   library:oclcnum "851794304" ;
   library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/3088376#Place/new_york_ny> ; # New York, NY
   library:placeOfPublication <http://id.loc.gov/vocabulary/countries/nyu> ;
   schema:about <http://id.worldcat.org/fast/895600> ; # Distribution (Probability theory)
   schema:about <http://id.worldcat.org/fast/1012163> ; # Mathematics
   schema:about <http://dewey.info/class/519.2/e23/> ;
   schema:bookFormat schema:EBook ;
   schema:contributor <http://viaf.org/viaf/2803333> ; # M. A. Lieberman
   schema:creator <http://viaf.org/viaf/76416498> ; # A. J. Lichtenberg
   schema:datePublished "1983" ;
   schema:description "This book treats stochastic motion in nonlinear oscillator systems. It describes a rapidly growing field of nonlinear mechanics with applications to a number of areas in science and engineering, including astronomy, plasma physics, statistical mechanics and hydrodynamics. The main em phasis is on intrinsic stochasticity in Hamiltonian systems, where the stochastic motion is generated by the dynamics itself and not by external noise. However, the effects of noise in modifying the intrinsic motion are also considered. A thorough introduction to chaotic motion in dissipative systems is given in the final chapter. Although the roots of the field are old, dating back to the last century when Poincare and others attempted to formulate a theory for nonlinear perturbations of planetary orbits, it was new mathematical results obtained in the 1960's, together with computational results obtained using high speed computers, that facilitated our new treatment of the subject. Since the new methods partly originated in mathematical advances, there have been two or three mathematical monographs exposing these developments. However, these monographs employ methods and language that are not readily accessible to scientists and engineers, and also do not give explicit tech niques for making practical calculations. In our treatment of the material, we emphasize physical insight rather than mathematical rigor. We present practical methods for describing the motion, for determining the transition from regular to stochastic behavior, and for characterizing the stochasticity. We rely heavily on numerical computations to illustrate the methods and to validate them."@en ;
   schema:description "1 Overview and Basic Concepts -- 2 Canonical Perturbation Theory -- 3 Mappings and Linear Stability -- 4 Transition to Global Stochasticity -- 5 Stochastic Motion and Diffusion -- 6 Three or More Degrees of Freedom -- 7 Dissipative Systems -- Appendix A -- Applications -- A.1. Planetary Motion -- A.2. Accelerators and Beams -- A.3. Charged Particle Confinement -- A.4. Charged Particle Heating -- A.S. Chemical Dynamics -- A.6. Quantum Systems -- Appendix B -- Hamiltonian Bifurcation Theory -- Author Index."@en ;
   schema:exampleOfWork <http://worldcat.org/entity/work/id/3088376> ;
   schema:genre "Electronic books"@en ;
   schema:inLanguage "en" ;
   schema:isPartOf <http://experiment.worldcat.org/entity/work/data/3088376#Series/applied_mathematical_sciences_springer_verlag_new_york_inc> ; # Applied mathematical sciences (Springer-Verlag New York Inc.) ;
   schema:isPartOf <http://worldcat.org/issn/0066-5452> ; # Applied Mathematical Sciences,
   schema:isSimilarTo <http://worldcat.org/entity/work/data/3088376#CreativeWork/> ;
   schema:name "Regular and Stochastic Motion"@en ;
   schema:productID "851794304" ;
   schema:publication <http://www.worldcat.org/title/-/oclc/851794304#PublicationEvent/new_york_ny_springer_new_york_1983> ;
   schema:publisher <http://experiment.worldcat.org/entity/work/data/3088376#Agent/springer_new_york> ; # Springer New York
   schema:url <https://link.springer.com/openurl?genre=book&isbn=978-0-387-90707-9> ;
   schema:url <http://link.springer.com/10.1007/978-1-4757-4257-2> ;
   schema:url <http://dx.doi.org/10.1007/978-1-4757-4257-2> ;
   schema:url <http://public.eblib.com/choice/publicfullrecord.aspx?p=3085791> ;
   schema:workExample <http://dx.doi.org/10.1007/978-1-4757-4257-2> ;
   schema:workExample <http://worldcat.org/isbn/9781475742572> ;
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/851794304> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/3088376#Agent/springer_new_york> # Springer New York
    a bgn:Agent ;
   schema:name "Springer New York" ;
    .

<http://experiment.worldcat.org/entity/work/data/3088376#Series/applied_mathematical_sciences_springer_verlag_new_york_inc> # Applied mathematical sciences (Springer-Verlag New York Inc.) ;
    a bgn:PublicationSeries ;
   schema:hasPart <http://www.worldcat.org/oclc/851794304> ; # Regular and Stochastic Motion
   schema:name "Applied mathematical sciences (Springer-Verlag New York Inc.) ;" ;
    .

<http://id.worldcat.org/fast/1012163> # Mathematics
    a schema:Intangible ;
   schema:name "Mathematics"@en ;
    .

<http://id.worldcat.org/fast/895600> # Distribution (Probability theory)
    a schema:Intangible ;
   schema:name "Distribution (Probability theory)"@en ;
    .

<http://link.springer.com/10.1007/978-1-4757-4257-2>
   rdfs:comment "from Springer" ;
   rdfs:comment "(Unlimited Concurrent Users)" ;
    .

<http://viaf.org/viaf/2803333> # M. A. Lieberman
    a schema:Person ;
   schema:familyName "Lieberman" ;
   schema:givenName "M. A." ;
   schema:name "M. A. Lieberman" ;
    .

<http://viaf.org/viaf/76416498> # A. J. Lichtenberg
    a schema:Person ;
   schema:familyName "Lichtenberg" ;
   schema:givenName "A. J." ;
   schema:name "A. J. Lichtenberg" ;
    .

<http://worldcat.org/isbn/9781475742572>
    a schema:ProductModel ;
   schema:isbn "1475742576" ;
   schema:isbn "9781475742572" ;
    .

<http://worldcat.org/issn/0066-5452> # Applied Mathematical Sciences,
    a bgn:PublicationSeries ;
   schema:hasPart <http://www.worldcat.org/oclc/851794304> ; # Regular and Stochastic Motion
   schema:issn "0066-5452" ;
   schema:name "Applied Mathematical Sciences," ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.