přejít na obsah
Relational knowledge discovery Náhled dokumentu
ZavřítNáhled dokumentu
Probíhá kontrola...

Relational knowledge discovery

Autor M E Müller
Vydavatel: New York : Cambridge University Press, 2012.
Edice: Lecture notes on machine learning.
Vydání/formát:   e-kniha : Document : EnglishZobrazit všechny vydání a formáty
Databáze:WorldCat
Shrnutí:
What is knowledge and how is it represented? This book focuses on the idea of formalising knowledge as relations, interpreting knowledge represented in databases or logic programs as relational data and discovering new knowledge by identifying hidden and defining new relations. After a brief introduction to representational issues, the author develops a relational language for abstract machine learning problems. He  Přečíst více...
Hodnocení:

(ještě nehodnoceno) 0 zobrazit recenze - Buďte první.

Předmětová hesla:
Více podobných

 

Najít online exemplář

Odkazy na tento dokument

Vyhledat exemplář v knihovně

&AllPage.SpinnerRetrieving; Vyhledávání knihoven, které vlastní tento dokument...

Detaily

Žánr/forma: Electronic books
Doplňující formát: Print version:
Müller, M.E. (Martin E.), 1970-
Relational knowledge discovery.
New York : Cambridge University Press, 2012
(DLC) 2011049968
Typ materiálu: Document, Internetový zdroj
Typ dokumentu: Internet Resource, Computer File
Všichni autoři/tvůrci: M E Müller
ISBN: 9781139518185 1139518186 9781139047869 1139047868 1280773812 9781280773815 9781139516334 1139516337
OCLC číslo: 796214849
Popis: 1 online resource.
Obsahy: Cover; Relational Knowledge Discovery; Title; Copyright; Contents; About this book; What it is about; How it is organised; Thanks to:; Chapter 1: Introduction; 1.1 Motivation; 1.1.1 Different kinds of learning; 1.1.2 Applications; 1.2 Related disciplines; 1.2.1 Codes and compression; 1.2.2 Information theory; 1.2.3 Minimum description length; 1.2.4 Kolmogorov complexity; 1.2.5 Probability theory; Conclusion; Chapter 2: Relational knowledge; 2.1 Objects and their attributes; 2.1.1 Collections of things: sets; 2.1.2 Properties of things: relations; 2.1.3 Special properties of relations.
Název edice: Lecture notes on machine learning.
Odpovědnost: M.E. Müller.

Anotace:

Introductory textbook presenting relational methods in machine learning.  Přečíst více...

Recenze

Recenze vložené uživatelem
Nahrávání recenzí GoodReads...
Přebírání recenzí DOGO books...

Štítky

Buďte první.

Podobné dokumenty

Související předmětová hesla:(5)

Seznamy uživatele s tímto dokumentem (2)

Potvrdit tento požadavek

Tento dokument jste si již vyžádali. Prosím vyberte Ok pokud chcete přesto v žádance pokračovat.

Propojená data


<http://www.worldcat.org/oclc/796214849>
library:oclcnum"796214849"
library:placeOfPublication
library:placeOfPublication
rdf:typeschema:Book
rdf:typeschema:MediaObject
rdf:valueUnknown value: dct
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:bookFormatschema:EBook
schema:creator
schema:datePublished"2012"
schema:description"Cover; Relational Knowledge Discovery; Title; Copyright; Contents; About this book; What it is about; How it is organised; Thanks to:; Chapter 1: Introduction; 1.1 Motivation; 1.1.1 Different kinds of learning; 1.1.2 Applications; 1.2 Related disciplines; 1.2.1 Codes and compression; 1.2.2 Information theory; 1.2.3 Minimum description length; 1.2.4 Kolmogorov complexity; 1.2.5 Probability theory; Conclusion; Chapter 2: Relational knowledge; 2.1 Objects and their attributes; 2.1.1 Collections of things: sets; 2.1.2 Properties of things: relations; 2.1.3 Special properties of relations."@en
schema:description"What is knowledge and how is it represented? This book focuses on the idea of formalising knowledge as relations, interpreting knowledge represented in databases or logic programs as relational data and discovering new knowledge by identifying hidden and defining new relations. After a brief introduction to representational issues, the author develops a relational language for abstract machine learning problems. He then uses this language to discuss traditional methods such as clustering and decision tree induction, before moving onto two previously underestimated topics that are just coming to the fore: rough set data analysis and inductive logic programming. Its clear and precise presentation is ideal for undergraduate computer science students. The book will also interest those who study artificial intelligence or machine learning at the graduate level. Exercises are provided and each concept is introduced using the same example domain, making it easier to compare the individual properties of different approaches."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/1075036730>
schema:genre"Electronic books"@en
schema:inLanguage"en"
schema:isPartOf
schema:name"Relational knowledge discovery"@en
schema:publication
schema:publisher
schema:url<http://public.eblib.com/choice/publicfullrecord.aspx?p=944687>
schema:url<http://www.myilibrary.com?id=368458>
schema:url<http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=458582>
schema:url<http://dx.doi.org/10.1017/CBO9781139047869>
schema:workExample
schema:workExample
schema:workExample
schema:workExample
wdrs:describedby

Content-negotiable representations

Zavřít okno

Prosím přihlaste se do WorldCat 

Nemáte účet? Můžete si jednoduše vytvořit bezplatný účet.