omitir hasta el contenido
Relational knowledge discovery Ver este material de antemano
CerrarVer este material de antemano
Chequeando…

Relational knowledge discovery

Autor: M E Müller
Editorial: New York : Cambridge University Press, 2012.
Serie: Lecture notes on machine learning.
Edición/Formato:   Libro-e : Documento : Inglés (eng)Ver todas las ediciones y todos los formatos
Base de datos:WorldCat
Resumen:
What is knowledge and how is it represented? This book focuses on the idea of formalising knowledge as relations, interpreting knowledge represented in databases or logic programs as relational data and discovering new knowledge by identifying hidden and defining new relations. After a brief introduction to representational issues, the author develops a relational language for abstract machine learning problems. He  Leer más
Calificación:

(todavía no calificado) 0 con reseñas - Ser el primero.

Temas
Más materiales como éste

 

Encontrar un ejemplar en línea

Enlaces a este material

Encontrar un ejemplar en la biblioteca

&AllPage.SpinnerRetrieving; Encontrando bibliotecas que tienen este material…

Detalles

Género/Forma: Electronic books
Formato físico adicional: Print version:
Müller, M.E. (Martin E.), 1970-
Relational knowledge discovery.
New York : Cambridge University Press, 2012
(DLC) 2011049968
Tipo de material: Documento, Recurso en Internet
Tipo de documento: Recurso en Internet, Archivo de computadora
Todos autores / colaboradores: M E Müller
ISBN: 9781139518185 1139518186 9781139047869 1139047868 1280773812 9781280773815 9781139516334 1139516337
Número OCLC: 796214849
Descripción: 1 online resource.
Contenido: Cover; Relational Knowledge Discovery; Title; Copyright; Contents; About this book; What it is about; How it is organised; Thanks to:; Chapter 1: Introduction; 1.1 Motivation; 1.1.1 Different kinds of learning; 1.1.2 Applications; 1.2 Related disciplines; 1.2.1 Codes and compression; 1.2.2 Information theory; 1.2.3 Minimum description length; 1.2.4 Kolmogorov complexity; 1.2.5 Probability theory; Conclusion; Chapter 2: Relational knowledge; 2.1 Objects and their attributes; 2.1.1 Collections of things: sets; 2.1.2 Properties of things: relations; 2.1.3 Special properties of relations.
Título de la serie: Lecture notes on machine learning.
Responsabilidad: M.E. Müller.

Resumen:

Introductory textbook presenting relational methods in machine learning.  Leer más

Reseñas

Reseñas contribuidas por usuarios
Recuperando reseñas de GoodReads…
Recuperando reseñas de DOGObooks…

Etiquetas

Ser el primero.

Materiales similares

Temas relacionados:(5)

Listas de usuarios con este material (2)

Confirmar este pedido

Ya ha pedido este material. Escoja OK si desea procesar el pedido de todos modos.

Datos enlazados


<http://www.worldcat.org/oclc/796214849>
library:oclcnum"796214849"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/796214849>
rdf:typeschema:Book
schema:about
schema:about
<http://id.worldcat.org/fast/871997>
rdf:typeschema:Intangible
schema:name"Computational learning theory"@en
schema:name"Computational learning theory."@en
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:bookFormatschema:EBook
schema:creator
schema:datePublished"2012"
schema:description"Cover; Relational Knowledge Discovery; Title; Copyright; Contents; About this book; What it is about; How it is organised; Thanks to:; Chapter 1: Introduction; 1.1 Motivation; 1.1.1 Different kinds of learning; 1.1.2 Applications; 1.2 Related disciplines; 1.2.1 Codes and compression; 1.2.2 Information theory; 1.2.3 Minimum description length; 1.2.4 Kolmogorov complexity; 1.2.5 Probability theory; Conclusion; Chapter 2: Relational knowledge; 2.1 Objects and their attributes; 2.1.1 Collections of things: sets; 2.1.2 Properties of things: relations; 2.1.3 Special properties of relations."@en
schema:description"What is knowledge and how is it represented? This book focuses on the idea of formalising knowledge as relations, interpreting knowledge represented in databases or logic programs as relational data and discovering new knowledge by identifying hidden and defining new relations. After a brief introduction to representational issues, the author develops a relational language for abstract machine learning problems. He then uses this language to discuss traditional methods such as clustering and decision tree induction, before moving onto two previously underestimated topics that are just coming to the fore: rough set data analysis and inductive logic programming. Its clear and precise presentation is ideal for undergraduate computer science students. The book will also interest those who study artificial intelligence or machine learning at the graduate level. Exercises are provided and each concept is introduced using the same example domain, making it easier to compare the individual properties of different approaches."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/1075036730>
schema:genre"Electronic books."@en
schema:inLanguage"en"
schema:name"Relational knowledge discovery"@en
schema:publisher
schema:url<http://public.eblib.com/choice/publicfullrecord.aspx?p=944687>
schema:url<http://www.myilibrary.com?id=368458>
schema:url<http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=458582>
schema:url
schema:url<http://dx.doi.org/10.1017/CBO9781139047869>
schema:workExample
schema:workExample
schema:workExample
schema:workExample

Content-negotiable representations

Cerrar ventana

Inicie una sesión con WorldCat 

¿No tienes una cuenta? Puede fácilmente crear una cuenta gratuita.