passa ai contenuti
Relational knowledge discovery Anteprima di questo documento
ChiudiAnteprima di questo documento
Stiamo controllando…

Relational knowledge discovery

Autore: M E Müller
Editore: New York : Cambridge University Press, 2012.
Serie: Lecture notes on machine learning.
Edizione/Formato:   eBook : Document : EnglishVedi tutte le edizioni e i formati
Banca dati:WorldCat
Sommario:
What is knowledge and how is it represented? This book focuses on the idea of formalising knowledge as relations, interpreting knowledge represented in databases or logic programs as relational data and discovering new knowledge by identifying hidden and defining new relations. After a brief introduction to representational issues, the author develops a relational language for abstract machine learning problems. He  Per saperne di più…
Voto:

(non ancora votato) 0 con commenti - Diventa il primo.

Soggetti
Altri come questo

 

Trova una copia online

Collegamenti a questo documento

Trova una copia in biblioteca

&AllPage.SpinnerRetrieving; Stiamo ricercando le biblioteche che possiedono questo documento…

Dettagli

Genere/forma: Electronic books
Informazioni aggiuntive sul formato: Print version:
Müller, M.E. (Martin E.), 1970-
Relational knowledge discovery.
New York : Cambridge University Press, 2012
(DLC) 2011049968
Tipo materiale: Document, Risorsa internet
Tipo documento: Internet Resource, Computer File
Tutti gli autori / Collaboratori: M E Müller
ISBN: 9781139518185 1139518186 9781139047869 1139047868 1280773812 9781280773815 9781139516334 1139516337
Numero OCLC: 796214849
Descrizione: 1 online resource.
Contenuti: Cover; Relational Knowledge Discovery; Title; Copyright; Contents; About this book; What it is about; How it is organised; Thanks to:; Chapter 1: Introduction; 1.1 Motivation; 1.1.1 Different kinds of learning; 1.1.2 Applications; 1.2 Related disciplines; 1.2.1 Codes and compression; 1.2.2 Information theory; 1.2.3 Minimum description length; 1.2.4 Kolmogorov complexity; 1.2.5 Probability theory; Conclusion; Chapter 2: Relational knowledge; 2.1 Objects and their attributes; 2.1.1 Collections of things: sets; 2.1.2 Properties of things: relations; 2.1.3 Special properties of relations.
Titolo della serie: Lecture notes on machine learning.
Responsabilità: M.E. Müller.

Abstract:

Introductory textbook presenting relational methods in machine learning.  Per saperne di più…

Commenti

Commenti degli utenti
Recuperando commenti GoodReads…
Stiamo recuperando commenti DOGObooks

Etichette

Diventa il primo.

Documenti simili

Conferma questa richiesta

Potresti aver già richiesto questo documento. Seleziona OK se si vuole procedere comunque con questa richiesta.

Dati collegati


<http://www.worldcat.org/oclc/796214849>
library:oclcnum"796214849"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/796214849>
rdf:typeschema:Book
schema:about
schema:about
<http://id.worldcat.org/fast/871997>
rdf:typeschema:Intangible
schema:name"Computational learning theory"@en
schema:name"Computational learning theory."@en
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:bookFormatschema:EBook
schema:creator
schema:datePublished"2012"
schema:description"Cover; Relational Knowledge Discovery; Title; Copyright; Contents; About this book; What it is about; How it is organised; Thanks to:; Chapter 1: Introduction; 1.1 Motivation; 1.1.1 Different kinds of learning; 1.1.2 Applications; 1.2 Related disciplines; 1.2.1 Codes and compression; 1.2.2 Information theory; 1.2.3 Minimum description length; 1.2.4 Kolmogorov complexity; 1.2.5 Probability theory; Conclusion; Chapter 2: Relational knowledge; 2.1 Objects and their attributes; 2.1.1 Collections of things: sets; 2.1.2 Properties of things: relations; 2.1.3 Special properties of relations."@en
schema:description"What is knowledge and how is it represented? This book focuses on the idea of formalising knowledge as relations, interpreting knowledge represented in databases or logic programs as relational data and discovering new knowledge by identifying hidden and defining new relations. After a brief introduction to representational issues, the author develops a relational language for abstract machine learning problems. He then uses this language to discuss traditional methods such as clustering and decision tree induction, before moving onto two previously underestimated topics that are just coming to the fore: rough set data analysis and inductive logic programming. Its clear and precise presentation is ideal for undergraduate computer science students. The book will also interest those who study artificial intelligence or machine learning at the graduate level. Exercises are provided and each concept is introduced using the same example domain, making it easier to compare the individual properties of different approaches."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/1075036730>
schema:genre"Electronic books."@en
schema:inLanguage"en"
schema:name"Relational knowledge discovery"@en
schema:publisher
schema:url<http://public.eblib.com/EBLPublic/PublicView.do?ptiID=944687>
schema:url<http://www.myilibrary.com?id=368458>
schema:url<http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=458582>
schema:url
schema:url<http://dx.doi.org/10.1017/CBO9781139047869>
schema:workExample
schema:workExample
schema:workExample
schema:workExample

Content-negotiable representations

Chiudi finestra

Per favore entra in WorldCat 

Non hai un account? Puoi facilmente crearne uno gratuito.