コンテンツへ移動
Relational knowledge discovery 資料のプレビュー
閉じる資料のプレビュー
確認中…

Relational knowledge discovery

著者: M E Müller
出版: New York : Cambridge University Press, 2012.
シリーズ: Lecture notes on machine learning.
エディション/フォーマット:   電子書籍 : Document : Englishすべてのエディションとフォーマットを見る
データベース:WorldCat
概要:
What is knowledge and how is it represented? This book focuses on the idea of formalising knowledge as relations, interpreting knowledge represented in databases or logic programs as relational data and discovering new knowledge by identifying hidden and defining new relations. After a brief introduction to representational issues, the author develops a relational language for abstract machine learning problems. He  続きを読む
評価:

(まだ評価がありません) 0 件のレビュー - まずはあなたから!

件名
関連情報

 

オンラインで入手

この資料へのリンク

オフラインで入手

&AllPage.SpinnerRetrieving; この資料の所蔵館を検索中…

詳細

ジャンル/形式: Electronic books
その他のフォーマット: Print version:
Müller, M.E. (Martin E.), 1970-
Relational knowledge discovery.
New York : Cambridge University Press, 2012
(DLC) 2011049968
資料の種類: Document, インターネット資料
ドキュメントの種類: インターネットリソース, コンピューターファイル
すべての著者/寄与者: M E Müller
ISBN: 9781139518185 1139518186 9781139047869 1139047868 1280773812 9781280773815 9781139516334 1139516337
OCLC No.: 796214849
形態 1 online resource.
コンテンツ: Cover; Relational Knowledge Discovery; Title; Copyright; Contents; About this book; What it is about; How it is organised; Thanks to:; Chapter 1: Introduction; 1.1 Motivation; 1.1.1 Different kinds of learning; 1.1.2 Applications; 1.2 Related disciplines; 1.2.1 Codes and compression; 1.2.2 Information theory; 1.2.3 Minimum description length; 1.2.4 Kolmogorov complexity; 1.2.5 Probability theory; Conclusion; Chapter 2: Relational knowledge; 2.1 Objects and their attributes; 2.1.1 Collections of things: sets; 2.1.2 Properties of things: relations; 2.1.3 Special properties of relations.
シリーズタイトル: Lecture notes on machine learning.
責任者: M.E. Müller.

概要:

Introductory textbook presenting relational methods in machine learning.  続きを読む

レビュー

ユーザーレビュー
GoodReadsのレビューを取得中…
DOGObooksのレビューを取得中…

タグ

まずはあなたから!
リクエストの確認

あなたは既にこの資料をリクエストしている可能性があります。このリクエストを続行してよろしければ、OK を選択してください。

リンクデータ


<http://www.worldcat.org/oclc/796214849>
library:oclcnum"796214849"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/796214849>
rdf:typeschema:Book
rdfs:seeAlso
schema:about
schema:about
schema:about
rdf:typeschema:Intangible
schema:name"COMPUTERS--Intelligence (AI) & Semantics."
schema:about
schema:about
schema:about
schema:about
schema:about
rdf:typeschema:Intangible
schema:name"COMPUTERS--Enterprise Applications--Business Intelligence Tools."
schema:about
schema:author
schema:bookFormatschema:EBook
schema:datePublished"2012"
schema:description"Cover; Relational Knowledge Discovery; Title; Copyright; Contents; About this book; What it is about; How it is organised; Thanks to:; Chapter 1: Introduction; 1.1 Motivation; 1.1.1 Different kinds of learning; 1.1.2 Applications; 1.2 Related disciplines; 1.2.1 Codes and compression; 1.2.2 Information theory; 1.2.3 Minimum description length; 1.2.4 Kolmogorov complexity; 1.2.5 Probability theory; Conclusion; Chapter 2: Relational knowledge; 2.1 Objects and their attributes; 2.1.1 Collections of things: sets; 2.1.2 Properties of things: relations; 2.1.3 Special properties of relations."
schema:description"What is knowledge and how is it represented? This book focuses on the idea of formalising knowledge as relations, interpreting knowledge represented in databases or logic programs as relational data and discovering new knowledge by identifying hidden and defining new relations. After a brief introduction to representational issues, the author develops a relational language for abstract machine learning problems. He then uses this language to discuss traditional methods such as clustering and decision tree induction, before moving onto two previously underestimated topics that are just coming to the fore: rough set data analysis and inductive logic programming. Its clear and precise presentation is ideal for undergraduate computer science students. The book will also interest those who study artificial intelligence or machine learning at the graduate level. Exercises are provided and each concept is introduced using the same example domain, making it easier to compare the individual properties of different approaches."
schema:exampleOfWork<http://worldcat.org/entity/work/id/1075036730>
schema:inLanguage"en"
schema:name"Relational knowledge discovery"
schema:publisher
rdf:typeschema:Organization
schema:name"Cambridge University Press"
schema:url<http://public.eblib.com/EBLPublic/PublicView.do?ptiID=944687>
schema:url<http://www.myilibrary.com?id=368458>
schema:url<http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=458582>
schema:url<http://dx.doi.org/10.1017/CBO9781139047869>
schema:workExample
schema:workExample
schema:workExample
schema:workExample
schema:workExample
schema:workExample
schema:workExample
schema:workExample

Content-negotiable representations

ウインドウを閉じる

WorldCatにログインしてください 

アカウントをお持ちではないですか?簡単に 無料アカウントを作成することができます。.