컨텐츠로 이동
Relational knowledge discovery 해당 항목을 미리보기
닫기해당 항목을 미리보기
확인중입니다…

Relational knowledge discovery

저자: M E Müller
출판사: New York : Cambridge University Press, 2012.
시리즈: Lecture notes on machine learning.
판/형식:   전자도서 : 문서 : 영어모든 판과 형식 보기
데이터베이스:WorldCat
요약:
What is knowledge and how is it represented? This book focuses on the idea of formalising knowledge as relations, interpreting knowledge represented in databases or logic programs as relational data and discovering new knowledge by identifying hidden and defining new relations. After a brief introduction to representational issues, the author develops a relational language for abstract machine learning problems. He  더 읽기…
평가:

(아무런 평가가 없습니다.) 0 리뷰와 함께 - 첫번째로 올려주세요.

주제
다음과 같습니다:

 

온라인으로 문서 찾기

이 항목에 대한 링크

도서관에서 사본 찾기

&AllPage.SpinnerRetrieving; 해당항목을 보유하고 있는 도서관을 찾는 중

상세정보

장르/형태: Electronic books
추가적인 물리적 형식: Print version:
Müller, M.E. (Martin E.), 1970-
Relational knowledge discovery.
New York : Cambridge University Press, 2012
(DLC) 2011049968
자료 유형: 문서, 인터넷 자료
문서 형식: 인터넷 자원, 컴퓨터 파일
모든 저자 / 참여자: M E Müller
ISBN: 9781139518185 1139518186 9781139047869 1139047868 1280773812 9781280773815 9781139516334 1139516337
OCLC 번호: 796214849
설명: 1 online resource.
내용: Cover; Relational Knowledge Discovery; Title; Copyright; Contents; About this book; What it is about; How it is organised; Thanks to:; Chapter 1: Introduction; 1.1 Motivation; 1.1.1 Different kinds of learning; 1.1.2 Applications; 1.2 Related disciplines; 1.2.1 Codes and compression; 1.2.2 Information theory; 1.2.3 Minimum description length; 1.2.4 Kolmogorov complexity; 1.2.5 Probability theory; Conclusion; Chapter 2: Relational knowledge; 2.1 Objects and their attributes; 2.1.1 Collections of things: sets; 2.1.2 Properties of things: relations; 2.1.3 Special properties of relations.
일련 제목: Lecture notes on machine learning.
책임: M.E. Müller.

초록:

Introductory textbook presenting relational methods in machine learning.  더 읽기…

리뷰

사용자-기여 리뷰
GoodReads 리뷰 가져오는 중…
DOGObooks 리뷰를 가지고 오는 중…

태그

첫번째 되기

유사 항목

관련 주제:(5)

이 항목을 가지고 있는 사용자 목록 (2)

요청하신 것을 확인하기

이 항목을 이미 요청하셨을 수도 있습니다. 만약 이 요청을 계속해서 진행하시려면 Ok을 선택하세요.

링크된 데이터


<http://www.worldcat.org/oclc/796214849>
library:oclcnum"796214849"
library:placeOfPublication
library:placeOfPublication
owl:sameAs<info:oclcnum/796214849>
rdf:typeschema:Book
schema:about
schema:about
<http://id.worldcat.org/fast/871997>
rdf:typeschema:Intangible
schema:name"Computational learning theory"@en
schema:name"Computational learning theory."@en
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:about
schema:bookFormatschema:EBook
schema:creator
schema:datePublished"2012"
schema:description"Cover; Relational Knowledge Discovery; Title; Copyright; Contents; About this book; What it is about; How it is organised; Thanks to:; Chapter 1: Introduction; 1.1 Motivation; 1.1.1 Different kinds of learning; 1.1.2 Applications; 1.2 Related disciplines; 1.2.1 Codes and compression; 1.2.2 Information theory; 1.2.3 Minimum description length; 1.2.4 Kolmogorov complexity; 1.2.5 Probability theory; Conclusion; Chapter 2: Relational knowledge; 2.1 Objects and their attributes; 2.1.1 Collections of things: sets; 2.1.2 Properties of things: relations; 2.1.3 Special properties of relations."@en
schema:description"What is knowledge and how is it represented? This book focuses on the idea of formalising knowledge as relations, interpreting knowledge represented in databases or logic programs as relational data and discovering new knowledge by identifying hidden and defining new relations. After a brief introduction to representational issues, the author develops a relational language for abstract machine learning problems. He then uses this language to discuss traditional methods such as clustering and decision tree induction, before moving onto two previously underestimated topics that are just coming to the fore: rough set data analysis and inductive logic programming. Its clear and precise presentation is ideal for undergraduate computer science students. The book will also interest those who study artificial intelligence or machine learning at the graduate level. Exercises are provided and each concept is introduced using the same example domain, making it easier to compare the individual properties of different approaches."@en
schema:exampleOfWork<http://worldcat.org/entity/work/id/1075036730>
schema:genre"Electronic books."@en
schema:inLanguage"en"
schema:name"Relational knowledge discovery"@en
schema:publisher
schema:url<http://public.eblib.com/EBLPublic/PublicView.do?ptiID=944687>
schema:url<http://www.myilibrary.com?id=368458>
schema:url<http://search.ebscohost.com/login.aspx?direct=true&scope=site&db=nlebk&db=nlabk&AN=458582>
schema:url
schema:url<http://dx.doi.org/10.1017/CBO9781139047869>
schema:workExample
schema:workExample
schema:workExample
schema:workExample

Content-negotiable representations

윈도우 닫기

WorldCat에 로그인 하십시오 

계정이 없으세요? 아주 간단한 절차를 통하여 무료 계정을 만드실 수 있습니다.