skip to content
Research in computational molecular biology : 21st Annual International Conference, RECOMB 2017, Hong Kong, China, May 3-7, 2017, Proceedings Preview this item
ClosePreview this item
Checking...

Research in computational molecular biology : 21st Annual International Conference, RECOMB 2017, Hong Kong, China, May 3-7, 2017, Proceedings

Author: S Cenk Sahinalp
Publisher: Cham, Switzerland : Springer, 2017.
Series: Lecture notes in computer science., Lecture notes in bioinformatics ;, 10229.; LNCS sublibrary., SL 8,, Bioinformatics.
Edition/Format:   eBook : Document : Conference publication : EnglishView all editions and formats
Summary:
This book constitutes the proceedings of the 21th Annual Conference on Research in Computational Molecular Biology, RECOMB 2017, held in Hong Kong, China, in May 2017. The 22 regular papers presented in this volume were carefully reviewed and selected from 184 submissions. 16 short abstracts are included in the back matter of the volume. They report on original research in all areas of computational molecular  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Genre/Form: Electronic books
Conference papers and proceedings
Congresses
Additional Physical Format: Print version:
RECOMB (Conference : 2005- ) (21st : 2017 : Hong Kong, China).
Research in computational molecular biology.
Cham, Switzerland : Springer, 2017
(OCoLC)978641801
Material Type: Conference publication, Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: S Cenk Sahinalp
ISBN: 9783319569703 3319569708
OCLC Number: 982931659
Notes: International conference proceedings.
Includes author index.
Description: 1 online resource (xiv, 406 pages) : illustrations.
Contents: Boosting alignment accuracy by adaptive local realignment --
A concurrent subtractive assembly approach for identification of disease associated sub-meta-genomes --
A flow procedure for the linearization of genome variation graphs --
Dynamic alignment-free and reference-free read compression --
A fast approximate algorithm for mapping long reads to large reference databases --
Determining the consistency of resolved triplets and fan triplets --
Progressive calibration and averaging for tandem mass spectrometry statistical confidence estimation: Why settle for a single decoy --
Resolving multi-copy duplications de novo using polyploid phasing --
A Bayesian active learning experimental design for inferring signaling networks --
BBK* (Branch and Bound over K*): A provable and efficient ensemble-based algorithm to optimize stability and binding affinity over large sequence spaces --
Super-bubbles, ultra-bubbles and cacti --
EPR-dictionaries: A practical and fast data structure for constant time searches in unidirectional and bidirectional FM indices --
A Bayesian framework for estimating cell type composition from DNA methylation without the need for methylation reference --
Towards recovering Allele-specific cancer genome graphs --
Using stochastic approximation techniques to efficiently construct confidence intervals for heritability --
Improved search of large transcriptomic sequencing databases using split sequence bloom trees --
All some sequence bloom trees --
Longitudinal genotype-phenotype association study via temporal structure auto-learning predictive model --
Improving imputation accuracy by inferring causal variants in genetic studies --
The copy-number tree mixture deconvolution problem and applications to multi-sample bulk sequencing tumor data --
Quantifying the impact of non-coding variants on transcription factor-DNA binding --
aBayesQR: A Bayesian method for reconstruction of viral populations characterized by low diversity --
BeWith: A between-within method for module discovery in cancer using integrated analysis of mutual exclusivity, co-occurrence and functional interactions --
K-mer Set Memory (KSM) motif representation enables accurate prediction of the impact of regulatory variants --
Network-based coverage of mutational profiles reveals cancer genes --
Ultra-accurate complex disorder prediction: case study of neurodevelopmental disorders --
Inference of the human polyadenylation Code --
Folding membrane proteins by deep transfer learning --
A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information --
Epistasis in genomic and survival data of cancer patients --
Ultra-fast identity by descent detection in biobank-scale cohorts using positional burrows-wheeler transform --
Joker de Bruijn: sequence libraries to cover all k-mers using joker characters --
GATTACA: Lightweight metagenomic binning using kmer counting --
Species tree estimation using ASTRAL: how many genes are enough --
Reconstructing antibody repertoires from error-prone immune-sequencing datasets --
NetREX: Network rewiring using EXpression --
Towards context specific regulatory networks --
E pluribus unum: United States of single cells --
ROSE: a deep learning based framework for predicting ribosome stalling.
Series Title: Lecture notes in computer science., Lecture notes in bioinformatics ;, 10229.; LNCS sublibrary., SL 8,, Bioinformatics.
Other Titles: RECOMB 2017
Responsibility: S. Cenk Sahinalp (eds.).

Abstract:

This book constitutes the proceedings of the 21th Annual Conference on Research in Computational Molecular Biology, RECOMB 2017, held in Hong Kong, China, in May 2017. The 22 regular papers presented  Read more...

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/982931659> # Research in computational molecular biology : 21st Annual International Conference, RECOMB 2017, Hong Kong, China, May 3-7, 2017, Proceedings
    a schema:MediaObject, schema:Book, schema:CreativeWork ;
    library:oclcnum "982931659" ;
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/sz> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/4249432103#Topic/bioinformatics> ; # Bioinformatics
    schema:about <http://dewey.info/class/570.285/e23/> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/4249432103#Topic/computational_biology> ; # Computational biology
    schema:alternateName "RECOMB 2017" ;
    schema:bookFormat schema:EBook ;
    schema:creator <http://experiment.worldcat.org/entity/work/data/4249432103#Meeting/recomb_conference_2005_21st_2017_hong_kong_china> ; # RECOMB (Conference : 2005- ) (21st : 2017 : Hong Kong, China)
    schema:datePublished "2017" ;
    schema:description "Boosting alignment accuracy by adaptive local realignment -- A concurrent subtractive assembly approach for identification of disease associated sub-meta-genomes -- A flow procedure for the linearization of genome variation graphs -- Dynamic alignment-free and reference-free read compression -- A fast approximate algorithm for mapping long reads to large reference databases -- Determining the consistency of resolved triplets and fan triplets -- Progressive calibration and averaging for tandem mass spectrometry statistical confidence estimation: Why settle for a single decoy -- Resolving multi-copy duplications de novo using polyploid phasing -- A Bayesian active learning experimental design for inferring signaling networks -- BBK* (Branch and Bound over K*): A provable and efficient ensemble-based algorithm to optimize stability and binding affinity over large sequence spaces -- Super-bubbles, ultra-bubbles and cacti -- EPR-dictionaries: A practical and fast data structure for constant time searches in unidirectional and bidirectional FM indices -- A Bayesian framework for estimating cell type composition from DNA methylation without the need for methylation reference -- Towards recovering Allele-specific cancer genome graphs -- Using stochastic approximation techniques to efficiently construct confidence intervals for heritability -- Improved search of large transcriptomic sequencing databases using split sequence bloom trees -- All some sequence bloom trees -- Longitudinal genotype-phenotype association study via temporal structure auto-learning predictive model -- Improving imputation accuracy by inferring causal variants in genetic studies -- The copy-number tree mixture deconvolution problem and applications to multi-sample bulk sequencing tumor data -- Quantifying the impact of non-coding variants on transcription factor-DNA binding -- aBayesQR: A Bayesian method for reconstruction of viral populations characterized by low diversity -- BeWith: A between-within method for module discovery in cancer using integrated analysis of mutual exclusivity, co-occurrence and functional interactions -- K-mer Set Memory (KSM) motif representation enables accurate prediction of the impact of regulatory variants -- Network-based coverage of mutational profiles reveals cancer genes -- Ultra-accurate complex disorder prediction: case study of neurodevelopmental disorders -- Inference of the human polyadenylation Code -- Folding membrane proteins by deep transfer learning -- A network integration approach for drug-target interaction prediction and computational drug repositioning from heterogeneous information -- Epistasis in genomic and survival data of cancer patients -- Ultra-fast identity by descent detection in biobank-scale cohorts using positional burrows-wheeler transform -- Joker de Bruijn: sequence libraries to cover all k-mers using joker characters -- GATTACA: Lightweight metagenomic binning using kmer counting -- Species tree estimation using ASTRAL: how many genes are enough -- Reconstructing antibody repertoires from error-prone immune-sequencing datasets -- NetREX: Network rewiring using EXpression -- Towards context specific regulatory networks -- E pluribus unum: United States of single cells -- ROSE: a deep learning based framework for predicting ribosome stalling."@en ;
    schema:description "This book constitutes the proceedings of the 21th Annual Conference on Research in Computational Molecular Biology, RECOMB 2017, held in Hong Kong, China, in May 2017. The 22 regular papers presented in this volume were carefully reviewed and selected from 184 submissions. 16 short abstracts are included in the back matter of the volume. They report on original research in all areas of computational molecular biology and bioinformatics."@en ;
    schema:editor <http://experiment.worldcat.org/entity/work/data/4249432103#Person/sahinalp_s_cenk> ; # S. Cenk Sahinalp
    schema:exampleOfWork <http://worldcat.org/entity/work/id/4249432103> ;
    schema:genre "Conference papers and proceedings"@en ;
    schema:genre "Conference publication"@en ;
    schema:genre "Electronic books"@en ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://worldcat.org/issn/0302-9743> ; # Lecture notes in bioinformatics,
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/4249432103#Series/lecture_notes_in_computer_science> ; # Lecture notes in computer science.
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/4249432103#Series/lncs_sublibrary> ; # LNCS sublibrary.
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/4249432103#Series/lncs_sublibrary_sl_8_bioinformatics> ; # LNCS sublibrary. SL 8, Bioinformatics
    schema:isSimilarTo <http://www.worldcat.org/oclc/978641801> ;
    schema:name "Research in computational molecular biology : 21st Annual International Conference, RECOMB 2017, Hong Kong, China, May 3-7, 2017, Proceedings"@en ;
    schema:productID "982931659" ;
    schema:url <http://dx.doi.org/10.1007/978-3-319-56970-3> ;
    schema:url <https://link.springer.com/openurl?genre=book&isbn=978-3-319-56969-7> ;
    schema:url <https://grinnell.idm.oclc.org/login?url=http://link.springer.com/10.1007/978-3-319-56970-3> ;
    schema:url <https://0-link-springer-com.pugwash.lib.warwick.ac.uk/book/10.1007/978-3-319-56970-3> ;
    schema:url <http://link.springer.com/10.1007/978-3-319-56970-3> ;
    schema:workExample <http://dx.doi.org/10.1007/978-3-319-56970-3> ;
    schema:workExample <http://worldcat.org/isbn/9783319569703> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/982931659> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/4249432103#Meeting/recomb_conference_2005_21st_2017_hong_kong_china> # RECOMB (Conference : 2005- ) (21st : 2017 : Hong Kong, China)
    a bgn:Meeting, schema:Event ;
    schema:location <http://experiment.worldcat.org/entity/work/data/4249432103#Place/hong_kong_china> ; # Hong Kong, China)
    schema:name "RECOMB (Conference : 2005- ) (21st : 2017 : Hong Kong, China)" ;
    .

<http://experiment.worldcat.org/entity/work/data/4249432103#Person/sahinalp_s_cenk> # S. Cenk Sahinalp
    a schema:Person ;
    schema:familyName "Sahinalp" ;
    schema:givenName "S. Cenk" ;
    schema:name "S. Cenk Sahinalp" ;
    .

<http://experiment.worldcat.org/entity/work/data/4249432103#Place/hong_kong_china> # Hong Kong, China)
    a schema:Place ;
    schema:name "Hong Kong, China)" ;
    .

<http://experiment.worldcat.org/entity/work/data/4249432103#Series/lecture_notes_in_computer_science> # Lecture notes in computer science.
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/982931659> ; # Research in computational molecular biology : 21st Annual International Conference, RECOMB 2017, Hong Kong, China, May 3-7, 2017, Proceedings
    schema:name "Lecture notes in computer science." ;
    .

<http://experiment.worldcat.org/entity/work/data/4249432103#Series/lncs_sublibrary> # LNCS sublibrary.
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/982931659> ; # Research in computational molecular biology : 21st Annual International Conference, RECOMB 2017, Hong Kong, China, May 3-7, 2017, Proceedings
    schema:name "LNCS sublibrary." ;
    .

<http://experiment.worldcat.org/entity/work/data/4249432103#Series/lncs_sublibrary_sl_8_bioinformatics> # LNCS sublibrary. SL 8, Bioinformatics
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/982931659> ; # Research in computational molecular biology : 21st Annual International Conference, RECOMB 2017, Hong Kong, China, May 3-7, 2017, Proceedings
    schema:name "LNCS sublibrary. SL 8, Bioinformatics" ;
    .

<http://experiment.worldcat.org/entity/work/data/4249432103#Topic/computational_biology> # Computational biology
    a schema:Intangible ;
    schema:name "Computational biology"@en ;
    .

<http://worldcat.org/isbn/9783319569703>
    a schema:ProductModel ;
    schema:isbn "3319569708" ;
    schema:isbn "9783319569703" ;
    .

<http://worldcat.org/issn/0302-9743> # Lecture notes in bioinformatics,
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/982931659> ; # Research in computational molecular biology : 21st Annual International Conference, RECOMB 2017, Hong Kong, China, May 3-7, 2017, Proceedings
    schema:issn "0302-9743" ;
    schema:name "Lecture notes in bioinformatics," ;
    .

<http://www.worldcat.org/oclc/978641801>
    a schema:CreativeWork ;
    rdfs:label "Research in computational molecular biology." ;
    schema:description "Print version:" ;
    schema:isSimilarTo <http://www.worldcat.org/oclc/982931659> ; # Research in computational molecular biology : 21st Annual International Conference, RECOMB 2017, Hong Kong, China, May 3-7, 2017, Proceedings
    .

<http://www.worldcat.org/title/-/oclc/982931659>
    a genont:InformationResource, genont:ContentTypeGenericResource ;
    schema:about <http://www.worldcat.org/oclc/982931659> ; # Research in computational molecular biology : 21st Annual International Conference, RECOMB 2017, Hong Kong, China, May 3-7, 2017, Proceedings
    schema:dateModified "2018-01-05" ;
    void:inDataset <http://purl.oclc.org/dataset/WorldCat> ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.