skip to content
Resolution of Surface Singularities. Preview this item
ClosePreview this item
Checking...

Resolution of Surface Singularities.

Author: U Orbanz
Publisher: New York : Springer April 2008.
Series: Lecture Notes in Mathematics Ser.
Edition/Format:   eBook : Document : English
Database:WorldCat
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy online

Links to this item

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Material Type: Document, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: U Orbanz
ISBN: 9783540139041 3540139044
OCLC Number: 466102822
Description: 1 online resource.
Contents: Embedded resolution of algebraic surfaces after abhyankar (Characteristic 0).- Desingularization in low dimension.- Desingularization in dimension 2.
Series Title: Lecture Notes in Mathematics Ser.
More information:

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.

Similar Items

Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/466102822> # Resolution of Surface Singularities.
    a schema:MediaObject, schema:Book, schema:CreativeWork ;
   library:oclcnum "466102822" ;
   library:placeOfPublication <http://dbpedia.org/resource/New_York_City> ; # New York
   library:placeOfPublication <http://id.loc.gov/vocabulary/countries/nju> ;
   schema:about <http://experiment.worldcat.org/entity/work/data/2918080107#Topic/surfaces_algebraic> ; # Surfaces, Algebraic
   schema:about <http://experiment.worldcat.org/entity/work/data/2918080107#Topic/singularities_mathematics> ; # Singularities (Mathematics)
   schema:bookFormat schema:EBook ;
   schema:datePublished "Aril 2008" ;
   schema:editor <http://viaf.org/viaf/108796289> ; # U. Orbanz
   schema:exampleOfWork <http://worldcat.org/entity/work/id/2918080107> ;
   schema:inLanguage "en" ;
   schema:isPartOf <http://experiment.worldcat.org/entity/work/data/2918080107#Series/lecture_notes_in_mathematics_ser> ; # Lecture Notes in Mathematics Ser.
   schema:name "Resolution of Surface Singularities."@en ;
   schema:productID "466102822" ;
   schema:publication <http://www.worldcat.org/title/-/oclc/466102822#PublicationEvent/new_york_springerapril_2008> ;
   schema:publisher <http://experiment.worldcat.org/entity/work/data/2918080107#Agent/springer> ; # Springer
   schema:url <http://www.springerlink.com/openurl.asp?genre=book&isbn=978-3-540-13904-1> ;
   schema:workExample <http://worldcat.org/isbn/9783540139041> ;
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/466102822> ;
    .


Related Entities

<http://dbpedia.org/resource/New_York_City> # New York
    a schema:Place ;
   schema:name "New York" ;
    .

<http://experiment.worldcat.org/entity/work/data/2918080107#Series/lecture_notes_in_mathematics_ser> # Lecture Notes in Mathematics Ser.
    a bgn:PublicationSeries ;
   schema:hasPart <http://www.worldcat.org/oclc/466102822> ; # Resolution of Surface Singularities.
   schema:name "Lecture Notes in Mathematics Ser." ;
    .

<http://experiment.worldcat.org/entity/work/data/2918080107#Topic/singularities_mathematics> # Singularities (Mathematics)
    a schema:Intangible ;
   schema:name "Singularities (Mathematics)"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/2918080107#Topic/surfaces_algebraic> # Surfaces, Algebraic
    a schema:Intangible ;
   schema:name "Surfaces, Algebraic"@en ;
    .

<http://viaf.org/viaf/108796289> # U. Orbanz
    a schema:Person ;
   schema:familyName "Orbanz" ;
   schema:givenName "U." ;
   schema:name "U. Orbanz" ;
    .

<http://worldcat.org/isbn/9783540139041>
    a schema:ProductModel ;
   schema:isbn "3540139044" ;
   schema:isbn "9783540139041" ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.