přejít na obsah
Schwarz's lemma from a differential geometric viewpoint Náhled dokumentu
ZavřítNáhled dokumentu
Probíhá kontrola...

Schwarz's lemma from a differential geometric viewpoint

Autor Kang-Tae Kim (1957-); World Scientific (Firm); Hanjin Lee
Vydavatel: Singapore ; Hackensack, N.J. : World Scientific Pub. Co., c2011.
Vydání/formát: e-kniha e-kniha : English
Databáze:World Scientific eBooks
Shrnutí:
The subject matter in this volume is Schwarz's Lemma which has become a crucial theme in many branches of research in mathematics for more than a hundred years to date. This volume of lecture notes focuses on its differential geometric developments by several excellent authors including, but not limited to, L Ahlfors, S S Chern, Y C Lu, S T Yau and H L Royden. This volume can be approached by a reader who has basic  Přečíst více...
Hodnocení:

(ještě nehodnoceno) 0 zobrazit recenze - Buďte první.

 

Najít online exemplář

Odkazy na tento dokument

Vyhledat exemplář v knihovně

Není možné získat informace o knihovnách, které vlastní tento dokument.

Detaily

Žánr/forma: Electronic books
Typ dokumentu: Book
Všichni autoři/tvůrci: Kang-Tae Kim (1957-); World Scientific (Firm); Hanjin Lee
ISBN: 9789814324793
Poznámka o jazyku: English
Jednoznačný identifikátor: 5011573457
Ocenění:
Popis: xvi, 82 p.
Podrobnosti: System requirements: Adobe Acrobat Reader. Mode of access: World Wide Web. Available to subscribing institutions.
Obsahy: 1. Some fundamentals. 1.1. Mean-value property. 1.2. Maximum principle, I. 1.3. Maximum principle, II -- 2. Classical Schwarz's lemma and the Poincare metric. 2.1. Classical Schwarz's lemma. 2.2. Pick's generalization. 2.3. The Poincare length and distance -- 3. Ahlfors' generalization. 3.1. Generalized Schwarz's lemma by Ahlfors. 3.2. Application to Kobayashi hyperbolicity -- 4. Fundamentals of Hermitian and Kahlerian geometry. 4.1. Almost complex structure. 4.2. Tangent space and bundle. 4.3. Cotangent space and bundle. 4.4. Connection and curvature. 4.5. Connection and curvature in moving frames -- 5. Chern-Lu formulae. 5.1. Pull-back metric against the original. 5.2. Connection, curvature and Laplacian. 5.3. Chern-Lu formulae. 5.4. General Schwarz's lemma by Chern-Lu -- 6. Tamed exhaustion and almost maximum principle. 6.1. Tamed exhaustion. 6.2. Almost maximum principle -- 7. General Schwarz's lemma by Yau and Royden. 7.1. Generalization by S. T. Yau. 7.2. Schwarz's lemma for volume element. 7.3. Generalization by H. L. Royden -- 8. More recent developments. 8.1. Osserman's generalization. 8.2. Schwarz's lemma for Riemann surfaces with K[symbol]0. 8.3. Final remarks.
Odpovědnost: Kang-Tae Kim & Hanjin Lee.

Anotace:

The subject matter in this volume is Schwarz's Lemma which has become a crucial theme in many branches of research in mathematics for more than a hundred years to date. This volume of lecture notes focuses on its differential geometric developments by several excellent authors including, but not limited to, L Ahlfors, S S Chern, Y C Lu, S T Yau and H L Royden. This volume can be approached by a reader who has basic knowledge on complex analysis and Riemannian geometry. It contains major historic differential geometric generalizations on Schwarz's Lemma and provides the necessary information while making the whole volume as concise as ever.

Recenze

Recenze vložené uživatelem
Nahrávání recenzí GoodReads...
Přebírání recenzí DOGO books...

Štítky

Buďte první.
Potvrdit tento požadavek

Tento dokument jste si již vyžádali. Prosím vyberte Ok pokud chcete přesto v žádance pokračovat.

Propojená data


<http://www.worldcat.org/oclc/5011573457>
library:oclcnum"5011573457"
library:placeOfPublication
owl:sameAs<info:oclcnum/5011573457>
rdf:typeschema:Book
schema:about
schema:about
schema:bookFormatschema:EBook
schema:contributor
schema:contributor
schema:copyrightYear"2011"
schema:creator
schema:description"1. Some fundamentals. 1.1. Mean-value property. 1.2. Maximum principle, I. 1.3. Maximum principle, II -- 2. Classical Schwarz's lemma and the Poincare metric. 2.1. Classical Schwarz's lemma. 2.2. Pick's generalization. 2.3. The Poincare length and distance -- 3. Ahlfors' generalization. 3.1. Generalized Schwarz's lemma by Ahlfors. 3.2. Application to Kobayashi hyperbolicity -- 4. Fundamentals of Hermitian and Kahlerian geometry. 4.1. Almost complex structure. 4.2. Tangent space and bundle. 4.3. Cotangent space and bundle. 4.4. Connection and curvature. 4.5. Connection and curvature in moving frames -- 5. Chern-Lu formulae. 5.1. Pull-back metric against the original. 5.2. Connection, curvature and Laplacian. 5.3. Chern-Lu formulae. 5.4. General Schwarz's lemma by Chern-Lu -- 6. Tamed exhaustion and almost maximum principle. 6.1. Tamed exhaustion. 6.2. Almost maximum principle -- 7. General Schwarz's lemma by Yau and Royden. 7.1. Generalization by S. T. Yau. 7.2. Schwarz's lemma for volume element. 7.3. Generalization by H. L. Royden -- 8. More recent developments. 8.1. Osserman's generalization. 8.2. Schwarz's lemma for Riemann surfaces with K[symbol]0. 8.3. Final remarks."
schema:description"The subject matter in this volume is Schwarz's Lemma which has become a crucial theme in many branches of research in mathematics for more than a hundred years to date. This volume of lecture notes focuses on its differential geometric developments by several excellent authors including, but not limited to, L Ahlfors, S S Chern, Y C Lu, S T Yau and H L Royden. This volume can be approached by a reader who has basic knowledge on complex analysis and Riemannian geometry. It contains major historic differential geometric generalizations on Schwarz's Lemma and provides the necessary information while making the whole volume as concise as ever."
schema:exampleOfWork<http://worldcat.org/entity/work/id/1251777805>
schema:genre"Electronic books."
schema:inLanguage"en"
schema:isPartOf
schema:name"Schwarz's lemma from a differential geometric viewpoint"
schema:numberOfPages"82"
schema:url<http://www.worldscientific.com/worldscibooks/10.1142/7944#t=toc>
schema:url
schema:workExample

Content-negotiable representations

Zavřít okno

Prosím přihlaste se do WorldCat 

Nemáte účet? Můžete si jednoduše vytvořit bezplatný účet.