zum Inhalt wechseln
Schwarz's lemma from a differential geometric viewpoint Titelvorschau
SchließenTitelvorschau
Prüfung…

Schwarz's lemma from a differential geometric viewpoint

Verfasser/in: Kang-Tae Kim (1957-); World Scientific (Firm); Hanjin Lee
Verlag: Singapore ; Hackensack, N.J. : World Scientific Pub. Co., c2011.
Ausgabe/Format E-Book E-Book : Englisch
Datenbank:World Scientific eBooks
Zusammenfassung:
The subject matter in this volume is Schwarz's Lemma which has become a crucial theme in many branches of research in mathematics for more than a hundred years to date. This volume of lecture notes focuses on its differential geometric developments by several excellent authors including, but not limited to, L Ahlfors, S S Chern, Y C Lu, S T Yau and H L Royden. This volume can be approached by a reader who has basic  Weiterlesen…
Bewertung:

(noch nicht bewertet) 0 mit Rezensionen - Verfassen Sie als Erste eine Rezension.

 

Online anzeigen

Links zu diesem Titel

Exemplar ausleihen

Keine Informationen über Bibliotheken gefunden, die diesen Titel besitzen.

Details

Gattung/Form: Electronic books
Dokumenttyp: Buch
Alle Autoren: Kang-Tae Kim (1957-); World Scientific (Firm); Hanjin Lee
ISBN: 9789814324793
Sprachhinweis: English
Identifikator: 5011573457
Auszeichnungen:
Beschreibung: xvi, 82 p.
Details: System requirements: Adobe Acrobat Reader. Mode of access: World Wide Web. Available to subscribing institutions.
Inhalt: 1. Some fundamentals. 1.1. Mean-value property. 1.2. Maximum principle, I. 1.3. Maximum principle, II -- 2. Classical Schwarz's lemma and the Poincare metric. 2.1. Classical Schwarz's lemma. 2.2. Pick's generalization. 2.3. The Poincare length and distance -- 3. Ahlfors' generalization. 3.1. Generalized Schwarz's lemma by Ahlfors. 3.2. Application to Kobayashi hyperbolicity -- 4. Fundamentals of Hermitian and Kahlerian geometry. 4.1. Almost complex structure. 4.2. Tangent space and bundle. 4.3. Cotangent space and bundle. 4.4. Connection and curvature. 4.5. Connection and curvature in moving frames -- 5. Chern-Lu formulae. 5.1. Pull-back metric against the original. 5.2. Connection, curvature and Laplacian. 5.3. Chern-Lu formulae. 5.4. General Schwarz's lemma by Chern-Lu -- 6. Tamed exhaustion and almost maximum principle. 6.1. Tamed exhaustion. 6.2. Almost maximum principle -- 7. General Schwarz's lemma by Yau and Royden. 7.1. Generalization by S. T. Yau. 7.2. Schwarz's lemma for volume element. 7.3. Generalization by H. L. Royden -- 8. More recent developments. 8.1. Osserman's generalization. 8.2. Schwarz's lemma for Riemann surfaces with K[symbol]0. 8.3. Final remarks.
Verfasserangabe: Kang-Tae Kim & Hanjin Lee.

Abstract:

The subject matter in this volume is Schwarz's Lemma which has become a crucial theme in many branches of research in mathematics for more than a hundred years to date. This volume of lecture notes focuses on its differential geometric developments by several excellent authors including, but not limited to, L Ahlfors, S S Chern, Y C Lu, S T Yau and H L Royden. This volume can be approached by a reader who has basic knowledge on complex analysis and Riemannian geometry. It contains major historic differential geometric generalizations on Schwarz's Lemma and provides the necessary information while making the whole volume as concise as ever.

Rezensionen

Nutzer-Rezensionen
Suche nach GoodReads-Rezensionen
Suche nach DOGObooks-Rezensionen…

Tags

Tragen Sie als Erste Tags ein.
Anfrage bestätigen

Sie haben diesen Titel bereits angefordert. Wenn Sie trotzdem fortfahren möchten, klicken Sie auf OK.

Fenster schließen

Bitte in WorldCat einloggen 

Sie haben kein Konto? Sie können sehr einfach ein kostenloses Konto anlegen,.