omitir hasta el contenido
Schwarz's lemma from a differential geometric viewpoint Ver este material de antemano
CerrarVer este material de antemano
Chequeando…

Schwarz's lemma from a differential geometric viewpoint

Autor: Kang-Tae Kim (1957-); World Scientific (Firm); Hanjin Lee
Editorial: Singapore ; Hackensack, N.J. : World Scientific Pub. Co., c2011.
Edición/Formato: Libro-e Libro-e : Inglés (eng)
Resumen:
The subject matter in this volume is Schwarz's Lemma which has become a crucial theme in many branches of research in mathematics for more than a hundred years to date. This volume of lecture notes focuses on its differential geometric developments by several excellent authors including, but not limited to, L Ahlfors, S S Chern, Y C Lu, S T Yau and H L Royden. This volume can be approached by a reader who has basic  Leer más
Calificación:

(todavía no calificado) 0 con reseñas - Ser el primero.

 

Encontrar un ejemplar en línea

Enlaces a este material

Encontrar un ejemplar en la biblioteca

No se pudo conseguir información sobre bibliotecas que tienen este material.

Detalles

Género/Forma: Electronic books
Tipo de documento Libro
Todos autores / colaboradores: Kang-Tae Kim (1957-); World Scientific (Firm); Hanjin Lee
ISBN: 9789814324793
Nota del idioma: English
Identificador único: 5011573457
Premios:
Descripción: xvi, 82 p.
Detalles: System requirements: Adobe Acrobat Reader. Mode of access: World Wide Web. Available to subscribing institutions.
Contenido: 1. Some fundamentals. 1.1. Mean-value property. 1.2. Maximum principle, I. 1.3. Maximum principle, II -- 2. Classical Schwarz's lemma and the Poincare metric. 2.1. Classical Schwarz's lemma. 2.2. Pick's generalization. 2.3. The Poincare length and distance -- 3. Ahlfors' generalization. 3.1. Generalized Schwarz's lemma by Ahlfors. 3.2. Application to Kobayashi hyperbolicity -- 4. Fundamentals of Hermitian and Kahlerian geometry. 4.1. Almost complex structure. 4.2. Tangent space and bundle. 4.3. Cotangent space and bundle. 4.4. Connection and curvature. 4.5. Connection and curvature in moving frames -- 5. Chern-Lu formulae. 5.1. Pull-back metric against the original. 5.2. Connection, curvature and Laplacian. 5.3. Chern-Lu formulae. 5.4. General Schwarz's lemma by Chern-Lu -- 6. Tamed exhaustion and almost maximum principle. 6.1. Tamed exhaustion. 6.2. Almost maximum principle -- 7. General Schwarz's lemma by Yau and Royden. 7.1. Generalization by S. T. Yau. 7.2. Schwarz's lemma for volume element. 7.3. Generalization by H. L. Royden -- 8. More recent developments. 8.1. Osserman's generalization. 8.2. Schwarz's lemma for Riemann surfaces with K[symbol]0. 8.3. Final remarks.
Responsabilidad: Kang-Tae Kim & Hanjin Lee.

Resumen:

The subject matter in this volume is Schwarz's Lemma which has become a crucial theme in many branches of research in mathematics for more than a hundred years to date. This volume of lecture notes focuses on its differential geometric developments by several excellent authors including, but not limited to, L Ahlfors, S S Chern, Y C Lu, S T Yau and H L Royden. This volume can be approached by a reader who has basic knowledge on complex analysis and Riemannian geometry. It contains major historic differential geometric generalizations on Schwarz's Lemma and provides the necessary information while making the whole volume as concise as ever.

Reseñas

Reseñas contribuidas por usuarios
Recuperando reseñas de GoodReads…
Recuperando reseñas de DOGObooks…

Etiquetas

Ser el primero.
Confirmar este pedido

Ya ha pedido este material. Escoja OK si desea procesar el pedido de todos modos.

Datos enlazados


Primary Entity

<http://www.worldcat.org/oclc/5011573457> # Schwarz's lemma from a differential geometric viewpoint
    a schema:Book, schema:CreativeWork ;
    library:oclcnum "5011573457" ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/1251777805#Place/singapore_hackensack_n_j_world_scientific_pub_co> ; # Singapore ; Hackensack, N.J. : World Scientific Pub. Co.
    schema:about <http://experiment.worldcat.org/entity/work/data/1251777805#Topic/geometry_riemannian> ; # Geometry, Riemannian.
    schema:about <http://experiment.worldcat.org/entity/work/data/1251777805#Topic/subharmonic_functions> ; # Subharmonic functions
    schema:bookFormat schema:EBook ;
    schema:contributor <http://experiment.worldcat.org/entity/work/data/1251777805#Organization/world_scientific_firm> ; # World Scientific (Firm)
    schema:contributor <http://experiment.worldcat.org/entity/work/data/1251777805#Person/lee_hanjin> ; # Hanjin Lee
    schema:copyrightYear "2011" ;
    schema:creator <http://experiment.worldcat.org/entity/work/data/1251777805#Person/kim_kang_tae_1957> ; # Kang-Tae Kim
    schema:description "1. Some fundamentals. 1.1. Mean-value property. 1.2. Maximum principle, I. 1.3. Maximum principle, II -- 2. Classical Schwarz's lemma and the Poincare metric. 2.1. Classical Schwarz's lemma. 2.2. Pick's generalization. 2.3. The Poincare length and distance -- 3. Ahlfors' generalization. 3.1. Generalized Schwarz's lemma by Ahlfors. 3.2. Application to Kobayashi hyperbolicity -- 4. Fundamentals of Hermitian and Kahlerian geometry. 4.1. Almost complex structure. 4.2. Tangent space and bundle. 4.3. Cotangent space and bundle. 4.4. Connection and curvature. 4.5. Connection and curvature in moving frames -- 5. Chern-Lu formulae. 5.1. Pull-back metric against the original. 5.2. Connection, curvature and Laplacian. 5.3. Chern-Lu formulae. 5.4. General Schwarz's lemma by Chern-Lu -- 6. Tamed exhaustion and almost maximum principle. 6.1. Tamed exhaustion. 6.2. Almost maximum principle -- 7. General Schwarz's lemma by Yau and Royden. 7.1. Generalization by S. T. Yau. 7.2. Schwarz's lemma for volume element. 7.3. Generalization by H. L. Royden -- 8. More recent developments. 8.1. Osserman's generalization. 8.2. Schwarz's lemma for Riemann surfaces with K[symbol]0. 8.3. Final remarks." ;
    schema:description "The subject matter in this volume is Schwarz's Lemma which has become a crucial theme in many branches of research in mathematics for more than a hundred years to date. This volume of lecture notes focuses on its differential geometric developments by several excellent authors including, but not limited to, L Ahlfors, S S Chern, Y C Lu, S T Yau and H L Royden. This volume can be approached by a reader who has basic knowledge on complex analysis and Riemannian geometry. It contains major historic differential geometric generalizations on Schwarz's Lemma and provides the necessary information while making the whole volume as concise as ever." ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/1251777805> ;
    schema:genre "Electronic books" ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/1251777805#Series/iisc_lecture_notes_series> ; # IISc lecture notes series ;
    schema:isSimilarTo <http://worldcat.org/entity/work/data/1251777805#CreativeWork/> ;
    schema:name "Schwarz's lemma from a differential geometric viewpoint" ;
    schema:numberOfPages "82" ;
    schema:productID "5011573457" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/#PublicationEvent/singapore_hackensack_n_j_world_scientific_pub_co_c2011> ;
    schema:url <http://www.worldscientific.com/worldscibooks/10.1142/7944#t=toc> ;
    schema:workExample <http://worldcat.org/isbn/9789814324793> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/5011573457> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/1251777805#Organization/world_scientific_firm> # World Scientific (Firm)
    a schema:Organization ;
    schema:name "World Scientific (Firm)" ;
    .

<http://experiment.worldcat.org/entity/work/data/1251777805#Person/kim_kang_tae_1957> # Kang-Tae Kim
    a schema:Person ;
    schema:birthDate "1957" ;
    schema:familyName "Kim" ;
    schema:givenName "Kang-Tae" ;
    schema:name "Kang-Tae Kim" ;
    .

<http://experiment.worldcat.org/entity/work/data/1251777805#Person/lee_hanjin> # Hanjin Lee
    a schema:Person ;
    schema:familyName "Lee" ;
    schema:givenName "Hanjin" ;
    schema:name "Hanjin Lee" ;
    .

<http://experiment.worldcat.org/entity/work/data/1251777805#Place/singapore_hackensack_n_j_world_scientific_pub_co> # Singapore ; Hackensack, N.J. : World Scientific Pub. Co.
    a schema:Place ;
    schema:name "Singapore ; Hackensack, N.J. : World Scientific Pub. Co." ;
    .

<http://experiment.worldcat.org/entity/work/data/1251777805#Series/iisc_lecture_notes_series> # IISc lecture notes series ;
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/> ;
    schema:name "IISc lecture notes series ;" ;
    schema:name "IISc lecture notes series " ;
    .

<http://experiment.worldcat.org/entity/work/data/1251777805#Topic/geometry_riemannian> # Geometry, Riemannian.
    a schema:Intangible ;
    schema:name "Geometry, Riemannian. " ;
    .

<http://experiment.worldcat.org/entity/work/data/1251777805#Topic/subharmonic_functions> # Subharmonic functions
    a schema:Intangible ;
    schema:name "Subharmonic functions" ;
    .

<http://worldcat.org/isbn/9789814324793>
    a schema:ProductModel ;
    schema:description "electronic bk." ;
    schema:isbn "9789814324793" ;
    .


Content-negotiable representations

Cerrar ventana

Inicie una sesión con WorldCat 

¿No tienes una cuenta? Puede fácilmente crear una cuenta gratuita.