passa ai contenuti
Schwarz's lemma from a differential geometric viewpoint Anteprima di questo documento
ChiudiAnteprima di questo documento
Stiamo controllando…

Schwarz's lemma from a differential geometric viewpoint

Autore: Kang-Tae Kim (1957-); World Scientific (Firm); Hanjin Lee
Editore: Singapore ; Hackensack, N.J. : World Scientific Pub. Co., c2011.
Edizione/Formato: eBook eBook : English
Sommario:
The subject matter in this volume is Schwarz's Lemma which has become a crucial theme in many branches of research in mathematics for more than a hundred years to date. This volume of lecture notes focuses on its differential geometric developments by several excellent authors including, but not limited to, L Ahlfors, S S Chern, Y C Lu, S T Yau and H L Royden. This volume can be approached by a reader who has basic  Per saperne di più…
Voto:

(non ancora votato) 0 con commenti - Diventa il primo.

 

Trova una copia online

Collegamenti a questo documento

Trova una copia in biblioteca

Non è stato possibile avere informazioni sulle biblioteche che possiedono questo documento

Dettagli

Genere/forma: Electronic books
Tipo documento Libro
Tutti gli autori / Collaboratori: Kang-Tae Kim (1957-); World Scientific (Firm); Hanjin Lee
{0} 9789814324793
Nota sulla lingua: English
Identificatore univoco: 5011573457
Riconoscimenti:
Descrizione: xvi, 82 p.
Dettagli: System requirements: Adobe Acrobat Reader. Mode of access: World Wide Web. Available to subscribing institutions.
Contenuti: 1. Some fundamentals. 1.1. Mean-value property. 1.2. Maximum principle, I. 1.3. Maximum principle, II -- 2. Classical Schwarz's lemma and the Poincare metric. 2.1. Classical Schwarz's lemma. 2.2. Pick's generalization. 2.3. The Poincare length and distance -- 3. Ahlfors' generalization. 3.1. Generalized Schwarz's lemma by Ahlfors. 3.2. Application to Kobayashi hyperbolicity -- 4. Fundamentals of Hermitian and Kahlerian geometry. 4.1. Almost complex structure. 4.2. Tangent space and bundle. 4.3. Cotangent space and bundle. 4.4. Connection and curvature. 4.5. Connection and curvature in moving frames -- 5. Chern-Lu formulae. 5.1. Pull-back metric against the original. 5.2. Connection, curvature and Laplacian. 5.3. Chern-Lu formulae. 5.4. General Schwarz's lemma by Chern-Lu -- 6. Tamed exhaustion and almost maximum principle. 6.1. Tamed exhaustion. 6.2. Almost maximum principle -- 7. General Schwarz's lemma by Yau and Royden. 7.1. Generalization by S. T. Yau. 7.2. Schwarz's lemma for volume element. 7.3. Generalization by H. L. Royden -- 8. More recent developments. 8.1. Osserman's generalization. 8.2. Schwarz's lemma for Riemann surfaces with K[symbol]0. 8.3. Final remarks.
Responsabilità: Kang-Tae Kim & Hanjin Lee.

Abstract:

The subject matter in this volume is Schwarz's Lemma which has become a crucial theme in many branches of research in mathematics for more than a hundred years to date. This volume of lecture notes focuses on its differential geometric developments by several excellent authors including, but not limited to, L Ahlfors, S S Chern, Y C Lu, S T Yau and H L Royden. This volume can be approached by a reader who has basic knowledge on complex analysis and Riemannian geometry. It contains major historic differential geometric generalizations on Schwarz's Lemma and provides the necessary information while making the whole volume as concise as ever.

Commenti

Commenti degli utenti
Recuperando commenti GoodReads…
Stiamo recuperando commenti DOGObooks

Etichette

Diventa il primo.
Conferma questa richiesta

Potresti aver già richiesto questo documento. Seleziona OK se si vuole procedere comunque con questa richiesta.

Linked data


Primary Entity

<http://www.worldcat.org/oclc/5011573457> # Schwarz's lemma from a differential geometric viewpoint
    a schema:Book, schema:CreativeWork ;
    library:oclcnum "5011573457" ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/1251777805#Place/singapore_hackensack_n_j_world_scientific_pub_co> ; # Singapore ; Hackensack, N.J. : World Scientific Pub. Co.
    schema:about <http://experiment.worldcat.org/entity/work/data/1251777805#Topic/geometry_riemannian> ; # Geometry, Riemannian.
    schema:about <http://experiment.worldcat.org/entity/work/data/1251777805#Topic/subharmonic_functions> ; # Subharmonic functions
    schema:bookFormat schema:EBook ;
    schema:contributor <http://experiment.worldcat.org/entity/work/data/1251777805#Organization/world_scientific_firm> ; # World Scientific (Firm)
    schema:contributor <http://experiment.worldcat.org/entity/work/data/1251777805#Person/lee_hanjin> ; # Hanjin Lee
    schema:copyrightYear "2011" ;
    schema:creator <http://experiment.worldcat.org/entity/work/data/1251777805#Person/kim_kang_tae_1957> ; # Kang-Tae Kim
    schema:description "1. Some fundamentals. 1.1. Mean-value property. 1.2. Maximum principle, I. 1.3. Maximum principle, II -- 2. Classical Schwarz's lemma and the Poincare metric. 2.1. Classical Schwarz's lemma. 2.2. Pick's generalization. 2.3. The Poincare length and distance -- 3. Ahlfors' generalization. 3.1. Generalized Schwarz's lemma by Ahlfors. 3.2. Application to Kobayashi hyperbolicity -- 4. Fundamentals of Hermitian and Kahlerian geometry. 4.1. Almost complex structure. 4.2. Tangent space and bundle. 4.3. Cotangent space and bundle. 4.4. Connection and curvature. 4.5. Connection and curvature in moving frames -- 5. Chern-Lu formulae. 5.1. Pull-back metric against the original. 5.2. Connection, curvature and Laplacian. 5.3. Chern-Lu formulae. 5.4. General Schwarz's lemma by Chern-Lu -- 6. Tamed exhaustion and almost maximum principle. 6.1. Tamed exhaustion. 6.2. Almost maximum principle -- 7. General Schwarz's lemma by Yau and Royden. 7.1. Generalization by S. T. Yau. 7.2. Schwarz's lemma for volume element. 7.3. Generalization by H. L. Royden -- 8. More recent developments. 8.1. Osserman's generalization. 8.2. Schwarz's lemma for Riemann surfaces with K[symbol]0. 8.3. Final remarks." ;
    schema:description "The subject matter in this volume is Schwarz's Lemma which has become a crucial theme in many branches of research in mathematics for more than a hundred years to date. This volume of lecture notes focuses on its differential geometric developments by several excellent authors including, but not limited to, L Ahlfors, S S Chern, Y C Lu, S T Yau and H L Royden. This volume can be approached by a reader who has basic knowledge on complex analysis and Riemannian geometry. It contains major historic differential geometric generalizations on Schwarz's Lemma and provides the necessary information while making the whole volume as concise as ever." ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/1251777805> ;
    schema:genre "Electronic books" ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/1251777805#Series/iisc_lecture_notes_series> ; # IISc lecture notes series ;
    schema:isSimilarTo <http://worldcat.org/entity/work/data/1251777805#CreativeWork/> ;
    schema:name "Schwarz's lemma from a differential geometric viewpoint" ;
    schema:numberOfPages "82" ;
    schema:productID "5011573457" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/#PublicationEvent/singapore_hackensack_n_j_world_scientific_pub_co_c2011> ;
    schema:url <http://www.worldscientific.com/worldscibooks/10.1142/7944#t=toc> ;
    schema:workExample <http://worldcat.org/isbn/9789814324793> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/5011573457> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/1251777805#Organization/world_scientific_firm> # World Scientific (Firm)
    a schema:Organization ;
    schema:name "World Scientific (Firm)" ;
    .

<http://experiment.worldcat.org/entity/work/data/1251777805#Person/kim_kang_tae_1957> # Kang-Tae Kim
    a schema:Person ;
    schema:birthDate "1957" ;
    schema:familyName "Kim" ;
    schema:givenName "Kang-Tae" ;
    schema:name "Kang-Tae Kim" ;
    .

<http://experiment.worldcat.org/entity/work/data/1251777805#Person/lee_hanjin> # Hanjin Lee
    a schema:Person ;
    schema:familyName "Lee" ;
    schema:givenName "Hanjin" ;
    schema:name "Hanjin Lee" ;
    .

<http://experiment.worldcat.org/entity/work/data/1251777805#Place/singapore_hackensack_n_j_world_scientific_pub_co> # Singapore ; Hackensack, N.J. : World Scientific Pub. Co.
    a schema:Place ;
    schema:name "Singapore ; Hackensack, N.J. : World Scientific Pub. Co." ;
    .

<http://experiment.worldcat.org/entity/work/data/1251777805#Series/iisc_lecture_notes_series> # IISc lecture notes series ;
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/> ;
    schema:name "IISc lecture notes series ;" ;
    schema:name "IISc lecture notes series " ;
    .

<http://experiment.worldcat.org/entity/work/data/1251777805#Topic/geometry_riemannian> # Geometry, Riemannian.
    a schema:Intangible ;
    schema:name "Geometry, Riemannian. " ;
    .

<http://experiment.worldcat.org/entity/work/data/1251777805#Topic/subharmonic_functions> # Subharmonic functions
    a schema:Intangible ;
    schema:name "Subharmonic functions" ;
    .

<http://worldcat.org/isbn/9789814324793>
    a schema:ProductModel ;
    schema:description "electronic bk." ;
    schema:isbn "9789814324793" ;
    .


Content-negotiable representations

Chiudi finestra

Per favore entra in WorldCat 

Non hai un account? Puoi facilmente crearne uno gratuito.