doorgaan naar inhoud
Schwarz's lemma from a differential geometric viewpoint Voorbeeldweergave van dit item
SluitenVoorbeeldweergave van dit item
Bezig met controle...

Schwarz's lemma from a differential geometric viewpoint

Auteur: Kang-Tae Kim (1957-); World Scientific (Firm); Hanjin Lee
Uitgever: Singapore ; Hackensack, N.J. : World Scientific Pub. Co., c2011.
Editie/Formaat: eBoek eBoek : Engels
Database:World Scientific eBooks
Samenvatting:
The subject matter in this volume is Schwarz's Lemma which has become a crucial theme in many branches of research in mathematics for more than a hundred years to date. This volume of lecture notes focuses on its differential geometric developments by several excellent authors including, but not limited to, L Ahlfors, S S Chern, Y C Lu, S T Yau and H L Royden. This volume can be approached by a reader who has basic  Meer lezen...
Beoordeling:

(nog niet beoordeeld) 0 met beoordelingen - U bent de eerste

 

Zoeken naar een online exemplaar

Links naar dit item

Zoeken naar een in de bibliotheek beschikbaar exemplaar

Wij konden geen informatie krijgen over bibliotheken die dit item hebben.

Details

Genre/Vorm: Electronic books
Soort document: Boek
Alle auteurs / medewerkers: Kang-Tae Kim (1957-); World Scientific (Firm); Hanjin Lee
ISBN: 9789814324793
Taalopmerking: English
Uniek kenmerk: 5011573457
Onderscheidingen:
Beschrijving: xvi, 82 p.
Details: System requirements: Adobe Acrobat Reader. Mode of access: World Wide Web. Available to subscribing institutions.
Inhoud: 1. Some fundamentals. 1.1. Mean-value property. 1.2. Maximum principle, I. 1.3. Maximum principle, II -- 2. Classical Schwarz's lemma and the Poincare metric. 2.1. Classical Schwarz's lemma. 2.2. Pick's generalization. 2.3. The Poincare length and distance -- 3. Ahlfors' generalization. 3.1. Generalized Schwarz's lemma by Ahlfors. 3.2. Application to Kobayashi hyperbolicity -- 4. Fundamentals of Hermitian and Kahlerian geometry. 4.1. Almost complex structure. 4.2. Tangent space and bundle. 4.3. Cotangent space and bundle. 4.4. Connection and curvature. 4.5. Connection and curvature in moving frames -- 5. Chern-Lu formulae. 5.1. Pull-back metric against the original. 5.2. Connection, curvature and Laplacian. 5.3. Chern-Lu formulae. 5.4. General Schwarz's lemma by Chern-Lu -- 6. Tamed exhaustion and almost maximum principle. 6.1. Tamed exhaustion. 6.2. Almost maximum principle -- 7. General Schwarz's lemma by Yau and Royden. 7.1. Generalization by S. T. Yau. 7.2. Schwarz's lemma for volume element. 7.3. Generalization by H. L. Royden -- 8. More recent developments. 8.1. Osserman's generalization. 8.2. Schwarz's lemma for Riemann surfaces with K[symbol]0. 8.3. Final remarks.
Verantwoordelijkheid: Kang-Tae Kim & Hanjin Lee.

Fragment:

The subject matter in this volume is Schwarz's Lemma which has become a crucial theme in many branches of research in mathematics for more than a hundred years to date. This volume of lecture notes focuses on its differential geometric developments by several excellent authors including, but not limited to, L Ahlfors, S S Chern, Y C Lu, S T Yau and H L Royden. This volume can be approached by a reader who has basic knowledge on complex analysis and Riemannian geometry. It contains major historic differential geometric generalizations on Schwarz's Lemma and provides the necessary information while making the whole volume as concise as ever.

Beoordelingen

Beoordelingen door gebruikers
Beoordelingen van GoodReads worden opgehaald...
Bezig met opvragen DOGObooks-reviews...

Tags

U bent de eerste.
Bevestig deze aanvraag

Misschien heeft u dit item reeds aangevraagd. Selecteer a.u.b. Ok als u toch wilt doorgaan met deze aanvraag.

Venster sluiten

Meld u aan bij WorldCat 

Heeft u geen account? U kunt eenvoudig een nieuwe gratis account aanmaken.