skip to content
A solution of the Alekseevski-Tate penetration equations Preview this item
ClosePreview this item
Checking...

A solution of the Alekseevski-Tate penetration equations

Author: W P Walters; Cyril Williams; U.S. Army Research Laboratory.
Publisher: Aberdeen Proving Ground, MD : Army Research Laboratory, [2005]
Series: ARL-TR (Aberdeen Proving Ground, Md.), 3606.
Edition/Format:   eBook : Document : National government publication : EnglishView all editions and formats
Summary:
The Alekseevski-Tate equations have been used for five decades to predict the penetration, penetration velocity, rod velocity, and rod length of long-rod penetrators and similar projectiles. These nonlinear equations were originally solved numerically and more recently by the exact analytical solution of Walters and Segletes. However, due to the nonlinear nature of the equations, penetration was obtained implicitly  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

Find a copy online

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Material Type: Document, Government publication, National government publication, Internet resource
Document Type: Internet Resource, Computer File
All Authors / Contributors: W P Walters; Cyril Williams; U.S. Army Research Laboratory.
OCLC Number: 74286410
Notes: Title from PDF title screen (ARL, viewed July 21, 2010).
"September 2005."
The original document contains color images.
Description: 1 online resource (viii, 40 pages) : illustrations (some color).
Series Title: ARL-TR (Aberdeen Proving Ground, Md.), 3606.
Responsibility: by William Walters and Cyril Williams.

Abstract:

The Alekseevski-Tate equations have been used for five decades to predict the penetration, penetration velocity, rod velocity, and rod length of long-rod penetrators and similar projectiles. These nonlinear equations were originally solved numerically and more recently by the exact analytical solution of Walters and Segletes. However, due to the nonlinear nature of the equations, penetration was obtained implicitly as a function of time. The current report obtains the velocities, length, and penetration as an explicit function of time by employing a perturbation solution of the nondimensional Alekseevski-Tate equations. Explicit analytical solutions are advantageous in that they clearly reveal the interplay of the various parameters on the solution of the equations. Perturbation solutions of these equations were first undertaken by Forrestal et al., up to the first order, and good agreement with the exact solutions was shown for relatively short times. The current study obtains a third-order perturbation solution and includes both penetrator and target strength terms. This report compares the exact solution to the perturbation solution, and a typical comparison between the exact and approximate solution for a tungsten rod impacting a steel armor target is shown. Also, alternate ways are investigated to normalize the governing equations in order to obtain an optimum perturbation parameter. In most cases, the third-order perturbation solution shows near perfect agreement with the exact solutions of the Alekseevski-Tate equations. This report compares the exact solution to the perturbation solution, and comments are made regarding the range of validity of the explicit solution.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/74286410> # A solution of the Alekseevski-Tate penetration equations
    a schema:MediaObject, schema:Book, schema:CreativeWork ;
    library:oclcnum "74286410" ;
    library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/5188473366#Place/aberdeen_proving_ground_md> ; # Aberdeen Proving Ground, MD
    library:placeOfPublication <http://id.loc.gov/vocabulary/countries/mdu> ;
    schema:about <http://experiment.worldcat.org/entity/work/data/5188473366#Topic/penetration> ; # Penetration
    schema:about <http://experiment.worldcat.org/entity/work/data/5188473366#Topic/solutions_general> ; # Solutions(general)
    schema:about <http://experiment.worldcat.org/entity/work/data/5188473366#Thing/alekseevski_tate_penetration_equations> ; # ALEKSEEVSKI-TATE PENETRATION EQUATIONS
    schema:about <http://experiment.worldcat.org/entity/work/data/5188473366#Topic/rods> ; # Rods
    schema:about <http://experiment.worldcat.org/entity/work/data/5188473366#Topic/velocity> ; # Velocity
    schema:about <http://experiment.worldcat.org/entity/work/data/5188473366#Topic/analytic_functions> ; # Analytic functions
    schema:about <http://experiment.worldcat.org/entity/work/data/5188473366#Topic/perturbation_theory> ; # Perturbation theory
    schema:about <http://id.worldcat.org/fast/1058905> ; # Perturbation (Mathematics)
    schema:about <http://experiment.worldcat.org/entity/work/data/5188473366#Topic/fortran> ; # Fortran
    schema:about <http://experiment.worldcat.org/entity/work/data/5188473366#Topic/theoretical_mathematics> ; # Theoretical Mathematics
    schema:about <http://experiment.worldcat.org/entity/work/data/5188473366#Thing/long_rod_penetrators> ; # LONG-ROD PENETRATORS
    schema:about <http://experiment.worldcat.org/entity/work/data/5188473366#Topic/nonlinear_algebraic_equations> ; # Nonlinear algebraic equations
    schema:about <http://experiment.worldcat.org/entity/work/data/5188473366#Topic/parametric_analysis> ; # Parametric analysis
    schema:about <http://experiment.worldcat.org/entity/work/data/5188473366#Topic/ballistics> ; # Ballistics
    schema:about <http://experiment.worldcat.org/entity/work/data/5188473366#Topic/projectile_trajectories> ; # Projectile trajectories
    schema:bookFormat schema:EBook ;
    schema:contributor <http://viaf.org/viaf/9013077> ; # Cyril Williams
    schema:contributor <http://viaf.org/viaf/149860432> ; # U.S. Army Research Laboratory.
    schema:creator <http://viaf.org/viaf/41991879> ; # William P. Walters
    schema:datePublished "2005" ;
    schema:description "The Alekseevski-Tate equations have been used for five decades to predict the penetration, penetration velocity, rod velocity, and rod length of long-rod penetrators and similar projectiles. These nonlinear equations were originally solved numerically and more recently by the exact analytical solution of Walters and Segletes. However, due to the nonlinear nature of the equations, penetration was obtained implicitly as a function of time. The current report obtains the velocities, length, and penetration as an explicit function of time by employing a perturbation solution of the nondimensional Alekseevski-Tate equations. Explicit analytical solutions are advantageous in that they clearly reveal the interplay of the various parameters on the solution of the equations. Perturbation solutions of these equations were first undertaken by Forrestal et al., up to the first order, and good agreement with the exact solutions was shown for relatively short times. The current study obtains a third-order perturbation solution and includes both penetrator and target strength terms. This report compares the exact solution to the perturbation solution, and a typical comparison between the exact and approximate solution for a tungsten rod impacting a steel armor target is shown. Also, alternate ways are investigated to normalize the governing equations in order to obtain an optimum perturbation parameter. In most cases, the third-order perturbation solution shows near perfect agreement with the exact solutions of the Alekseevski-Tate equations. This report compares the exact solution to the perturbation solution, and comments are made regarding the range of validity of the explicit solution."@en ;
    schema:exampleOfWork <http://worldcat.org/entity/work/id/5188473366> ;
    schema:genre "National government publication"@en ;
    schema:genre "Government publication"@en ;
    schema:inLanguage "en" ;
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/5188473366#Series/arl_tr> ; # ARL-TR ;
    schema:isPartOf <http://experiment.worldcat.org/entity/work/data/5188473366#Series/arl_tr_aberdeen_proving_ground_md> ; # ARL-TR (Aberdeen Proving Ground, Md.) ;
    schema:name "A solution of the Alekseevski-Tate penetration equations"@en ;
    schema:productID "74286410" ;
    schema:publication <http://www.worldcat.org/title/-/oclc/74286410#PublicationEvent/aberdeen_proving_ground_md_army_research_laboratory_2005> ;
    schema:publisher <http://experiment.worldcat.org/entity/work/data/5188473366#Agent/army_research_laboratory> ; # Army Research Laboratory
    schema:url <http://www.dtice.mil/docs/citations/ADA443657> ;
    schema:url <http://purl.access.gpo.gov/GPO/LPS124354> ;
    schema:url <http://www.arl.army.mil/arlreports/2005/ARL-TR-3606.pdf> ;
    wdrs:describedby <http://www.worldcat.org/title/-/oclc/74286410> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/5188473366#Agent/army_research_laboratory> # Army Research Laboratory
    a bgn:Agent ;
    schema:name "Army Research Laboratory" ;
    .

<http://experiment.worldcat.org/entity/work/data/5188473366#Place/aberdeen_proving_ground_md> # Aberdeen Proving Ground, MD
    a schema:Place ;
    schema:name "Aberdeen Proving Ground, MD" ;
    .

<http://experiment.worldcat.org/entity/work/data/5188473366#Series/arl_tr> # ARL-TR ;
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/74286410> ; # A solution of the Alekseevski-Tate penetration equations
    schema:name "ARL-TR ;" ;
    .

<http://experiment.worldcat.org/entity/work/data/5188473366#Series/arl_tr_aberdeen_proving_ground_md> # ARL-TR (Aberdeen Proving Ground, Md.) ;
    a bgn:PublicationSeries ;
    schema:hasPart <http://www.worldcat.org/oclc/74286410> ; # A solution of the Alekseevski-Tate penetration equations
    schema:name "ARL-TR (Aberdeen Proving Ground, Md.) ;" ;
    .

<http://experiment.worldcat.org/entity/work/data/5188473366#Thing/alekseevski_tate_penetration_equations> # ALEKSEEVSKI-TATE PENETRATION EQUATIONS
    a schema:Thing ;
    schema:name "ALEKSEEVSKI-TATE PENETRATION EQUATIONS" ;
    .

<http://experiment.worldcat.org/entity/work/data/5188473366#Thing/long_rod_penetrators> # LONG-ROD PENETRATORS
    a schema:Thing ;
    schema:name "LONG-ROD PENETRATORS" ;
    .

<http://experiment.worldcat.org/entity/work/data/5188473366#Topic/analytic_functions> # Analytic functions
    a schema:Intangible ;
    schema:name "Analytic functions"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/5188473366#Topic/nonlinear_algebraic_equations> # Nonlinear algebraic equations
    a schema:Intangible ;
    schema:name "Nonlinear algebraic equations"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/5188473366#Topic/parametric_analysis> # Parametric analysis
    a schema:Intangible ;
    schema:name "Parametric analysis"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/5188473366#Topic/perturbation_theory> # Perturbation theory
    a schema:Intangible ;
    schema:name "Perturbation theory"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/5188473366#Topic/projectile_trajectories> # Projectile trajectories
    a schema:Intangible ;
    schema:name "Projectile trajectories"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/5188473366#Topic/solutions_general> # Solutions(general)
    a schema:Intangible ;
    schema:name "Solutions(general)"@en ;
    .

<http://experiment.worldcat.org/entity/work/data/5188473366#Topic/theoretical_mathematics> # Theoretical Mathematics
    a schema:Intangible ;
    schema:name "Theoretical Mathematics"@en ;
    .

<http://id.worldcat.org/fast/1058905> # Perturbation (Mathematics)
    a schema:Intangible ;
    schema:name "Perturbation (Mathematics)"@en ;
    .

<http://viaf.org/viaf/149860432> # U.S. Army Research Laboratory.
    a schema:Organization ;
    schema:name "U.S. Army Research Laboratory." ;
    .

<http://viaf.org/viaf/41991879> # William P. Walters
    a schema:Person ;
    schema:birthDate "1943" ;
    schema:familyName "Walters" ;
    schema:givenName "William P." ;
    schema:givenName "W. P." ;
    schema:name "William P. Walters" ;
    .

<http://viaf.org/viaf/9013077> # Cyril Williams
    a schema:Person ;
    schema:familyName "Williams" ;
    schema:givenName "Cyril" ;
    schema:name "Cyril Williams" ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.