skip to content
Some Qualitative Properties of Bivariate Euler-Frobenius Polynomials. Preview this item
ClosePreview this item
Checking...

Some Qualitative Properties of Bivariate Euler-Frobenius Polynomials.

Author: C De Boor; K Hoellig; S Riemenschneider; WISCONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER.
Publisher: Ft. Belvoir Defense Technical Information Center OCT 1984.
Edition/Format:   Print book : EnglishView all editions and formats
Database:WorldCat
Summary:
This is a further report in a series devoted to the study of box splines. Box splines provide a natural generalization of univariate cardinal splines, i.e., splines with a uniform knot sequence. The process of univariate spline interpolation becomes particularly simple in the cardinal case, and this report considers the corresponding bivariate process of interpolation at the integer points in the plane to a given  Read more...
Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Document Type: Book
All Authors / Contributors: C De Boor; K Hoellig; S Riemenschneider; WISCONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER.
OCLC Number: 227633587
Description: 20 pages

Abstract:

This is a further report in a series devoted to the study of box splines. Box splines provide a natural generalization of univariate cardinal splines, i.e., splines with a uniform knot sequence. The process of univariate spline interpolation becomes particularly simple in the cardinal case, and this report considers the corresponding bivariate process of interpolation at the integer points in the plane to a given function by a linear combination of integer translates of a box spline. In particular, the report shows that this process is well posed, i.e., any bounded continuous function has exactly one such bounded interpolant If. The argument uses the Fourier transform to identify a certain trigonometric polynomial (in two variables) whose nonvanishing is equivalent to the asserted well-posedness. The minimum value of this polynomial yields a bound on the norm of the resulting interpolation projector I.

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/227633587> # Some Qualitative Properties of Bivariate Euler-Frobenius Polynomials.
    a schema:Book, schema:CreativeWork ;
   library:oclcnum "227633587" ;
   library:placeOfPublication <http://id.loc.gov/vocabulary/countries/vau> ;
   library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/501899483#Place/ft_belvoir> ; # Ft. Belvoir
   schema:about <http://experiment.worldcat.org/entity/work/data/501899483#Topic/bivariate_analysis> ; # Bivariate analysis
   schema:about <http://experiment.worldcat.org/entity/work/data/501899483#Topic/statistics_and_probability> ; # Statistics and Probability
   schema:about <http://experiment.worldcat.org/entity/work/data/501899483#Topic/variables> ; # Variables
   schema:about <http://experiment.worldcat.org/entity/work/data/501899483#Thing/euler_frobenius_polynomials> ; # Euler-Frobenius polynomials
   schema:about <http://experiment.worldcat.org/entity/work/data/501899483#Topic/splines> ; # Splines
   schema:about <http://experiment.worldcat.org/entity/work/data/501899483#Topic/polynomials> ; # Polynomials
   schema:about <http://experiment.worldcat.org/entity/work/data/501899483#Topic/theorems> ; # Theorems
   schema:about <http://experiment.worldcat.org/entity/work/data/501899483#Thing/multivariate_splines> ; # Multivariate splines
   schema:about <http://experiment.worldcat.org/entity/work/data/501899483#Topic/interpolation> ; # Interpolation
   schema:about <http://experiment.worldcat.org/entity/work/data/501899483#Thing/box_splines> ; # Box splines
   schema:bookFormat bgn:PrintBook ;
   schema:contributor <http://experiment.worldcat.org/entity/work/data/501899483#Organization/wisconsin_univ_madison_mathematics_research_center> ; # WISCONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER.
   schema:contributor <http://experiment.worldcat.org/entity/work/data/501899483#Person/de_boor_c> ; # C. De Boor
   schema:contributor <http://viaf.org/viaf/41908188> ; # S. Riemenschneider
   schema:contributor <http://viaf.org/viaf/27158053> ; # K. Hoellig
   schema:datePublished "1984" ;
   schema:datePublished "OCT 1984" ;
   schema:description "This is a further report in a series devoted to the study of box splines. Box splines provide a natural generalization of univariate cardinal splines, i.e., splines with a uniform knot sequence. The process of univariate spline interpolation becomes particularly simple in the cardinal case, and this report considers the corresponding bivariate process of interpolation at the integer points in the plane to a given function by a linear combination of integer translates of a box spline. In particular, the report shows that this process is well posed, i.e., any bounded continuous function has exactly one such bounded interpolant If. The argument uses the Fourier transform to identify a certain trigonometric polynomial (in two variables) whose nonvanishing is equivalent to the asserted well-posedness. The minimum value of this polynomial yields a bound on the norm of the resulting interpolation projector I."@en ;
   schema:exampleOfWork <http://worldcat.org/entity/work/id/501899483> ;
   schema:inLanguage "en" ;
   schema:name "Some Qualitative Properties of Bivariate Euler-Frobenius Polynomials."@en ;
   schema:productID "227633587" ;
   schema:publication <http://www.worldcat.org/title/-/oclc/227633587#PublicationEvent/ft_belvoirdefense_technical_information_centeroct_1984> ;
   schema:publisher <http://experiment.worldcat.org/entity/work/data/501899483#Agent/defense_technical_information_center> ; # Defense Technical Information Center
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/227633587> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/501899483#Agent/defense_technical_information_center> # Defense Technical Information Center
    a bgn:Agent ;
   schema:name "Defense Technical Information Center" ;
    .

<http://experiment.worldcat.org/entity/work/data/501899483#Organization/wisconsin_univ_madison_mathematics_research_center> # WISCONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER.
    a schema:Organization ;
   schema:name "WISCONSIN UNIV-MADISON MATHEMATICS RESEARCH CENTER." ;
    .

<http://experiment.worldcat.org/entity/work/data/501899483#Person/de_boor_c> # C. De Boor
    a schema:Person ;
   schema:familyName "De Boor" ;
   schema:givenName "C." ;
   schema:name "C. De Boor" ;
    .

<http://experiment.worldcat.org/entity/work/data/501899483#Thing/euler_frobenius_polynomials> # Euler-Frobenius polynomials
    a schema:Thing ;
   schema:name "Euler-Frobenius polynomials" ;
    .

<http://experiment.worldcat.org/entity/work/data/501899483#Thing/multivariate_splines> # Multivariate splines
    a schema:Thing ;
   schema:name "Multivariate splines" ;
    .

<http://experiment.worldcat.org/entity/work/data/501899483#Topic/statistics_and_probability> # Statistics and Probability
    a schema:Intangible ;
   schema:name "Statistics and Probability"@en ;
    .

<http://viaf.org/viaf/27158053> # K. Hoellig
    a schema:Person ;
   schema:familyName "Hoellig" ;
   schema:givenName "K." ;
   schema:name "K. Hoellig" ;
    .

<http://viaf.org/viaf/41908188> # S. Riemenschneider
    a schema:Person ;
   schema:familyName "Riemenschneider" ;
   schema:givenName "S." ;
   schema:name "S. Riemenschneider" ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.