skip to content
Space antenna handbook Preview this item
ClosePreview this item
Checking...

Space antenna handbook

Author: W A Imbriale; Steven Gao; Luigi Boccia
Publisher: Chichester, West Sussex : Wiley, 2012.
Edition/Format:   Print book : EnglishView all editions and formats
Database:WorldCat
Summary:

This book addresses a broad range of topics on antennas for space applications. First, it introduces the fundamental methodologies of space antenna design, modelling and analysis as well as the  Read more...

Rating:

(not yet rated) 0 with reviews - Be the first.

Subjects
More like this

 

Find a copy in the library

&AllPage.SpinnerRetrieving; Finding libraries that hold this item...

Details

Document Type: Book
All Authors / Contributors: W A Imbriale; Steven Gao; Luigi Boccia
ISBN: 9781119993193 1119993199
OCLC Number: 768606924
Description: xxvii, 744 pages : illustrations ; 26 cm
Contents: Preface xvii Acknowledgments xix Acronyms xxi Contributors xxv 1 Antenna Basics 1 Luigi Boccia and Olav Breinbjerg 1.1 Introduction 1 1.2 Antenna Performance Parameters 2 1.2.1 Reflection Coefficient and Voltage Standing Wave Ratio 2 1.2.2 Antenna Impedance 3 1.2.3 Radiation Pattern and Coverage 4 1.2.4 Polarization 6 1.2.5 Directivity 7 1.2.6 Gain and Realized Gain 8 1.2.7 Equivalent Isotropically Radiated Power 8 1.2.8 Effective Area 9 1.2.9 Phase Center 9 1.2.10 Bandwidth 9 1.2.11 Antenna Noise Temperature 9 1.3 Basic Antenna Elements 10 1.3.1 Wire Antennas 10 1.3.2 Horn Antennas 10 1.3.3 Reflectors 15 1.3.4 Helical Antennas 17 1.3.5 Printed Antennas 19 1.4 Arrays 26 1.4.1 Array Configurations 28 1.5 Basic Effects of Antennas in the Space Environment 30 1.5.1 Multipaction 30 1.5.2 Passive Inter-modulation 31 1.5.3 Outgassing 31 References 32 2 Space Antenna Modeling 36 Jian Feng Zhang, Xue Wei Ping, Wen Ming Yu, Xiao Yang Zhou, and Tie Jun Cui 2.1 Introduction 36 2.1.1 Maxwell s Equations 37 2.1.2 CEM 37 2.2 Methods of Antenna Modeling 39 2.2.1 Basic Theory 39 2.2.2 Method of Moments 40 2.2.3 FEM 45 2.2.4 FDTD Method 49 2.3 Fast Algorithms for Large Space Antenna Modeling 54 2.3.1 Introduction 54 2.3.2 MLFMA 54 2.3.3 Hierarchical Basis for the FEM 62 2.4 Case Studies: Effects of the Satellite Body on the Radiation Patterns of Antennas 68 2.5 Summary 73 Acknowledgments 73 References 73 3 System Architectures of Satellite Communication, Radar, Navigation and Remote Sensing 76 Michael A. Thorburn 3.1 Introduction 76 3.2 Elements of Satellite System Architecture 76 3.3 Satellite Missions 77 3.4 Communications Satellites 77 3.4.1 Fixed Satellite Services 77 3.4.2 Broadcast Satellite Services (Direct Broadcast Services) 78 3.4.3 Digital Audio Radio Services 78 3.4.4 Direct to Home Broadband Services 78 3.4.5 Mobile Communications Services 78 3.5 Radar Satellites 79 3.6 Navigational Satellites 79 3.7 Remote Sensing Satellites 80 3.8 Architecture of Satellite Command and Control 80 3.9 The Communications Payload Transponder 80 3.9.1 Bent-Pipe Transponders 81 3.9.2 Digital Transponders 81 3.9.3 Regenerative Repeater 81 3.10 Satellite Functional Requirements 81 3.10.1 Key Performance Concepts: Coverage, Frequency Allocations 82 3.10.2 Architecture of the Communications Payload 82 3.10.3 Satellite Communications System Performance Requirements 83 3.11 The Satellite Link Equation 83 3.12 The Microwave Transmitter Block 84 3.12.1 Intercept Point 85 3.12.2 Output Backoff 86 3.12.3 The Transmit Antenna and EIRP 87 3.13 Rx Front-End Block 88 3.13.1 Noise Figure and Noise Temperature 88 3.14 Received Power in the Communications System s RF Link 90 3.14.1 The Angular Dependencies of the Uplink and Downlink 91 3.15 Additional Losses in the Satellite and Antenna 91 3.15.1 Additional Losses due to Propagation Effects and the Atmosphere 91 3.15.2 Ionospheric Effects Scintillation and Polarization Rotation 93 3.16 Thermal Noise and the Antenna Noise Temperature 93 3.16.1 The Interface between the Antenna and the Communications System 93 3.16.2 The Uplink Signal to Noise 94 3.17 The SNR Equation and Minimum Detectable Signal 94 3.18 Power Flux Density, Saturation Flux Density and Dynamic Range 95 3.18.1 Important Relationship between PFD and Gain State of the Satellite Transponder 95 3.19 Full-Duplex Operation and Passive Intermodulation 96 3.20 Gain and Gain Variation 96 3.21 Pointing Error 97 3.22 Remaining Elements of Satellite System Architecture 98 3.23 Orbits and Orbital Considerations 98 3.24 Spacecraft Introduction 100 3.25 Spacecraft Budgets (Mass, Power, Thermal) 101 3.25.1 Satellite Mass 101 3.25.2 Satellite Power 101 3.25.3 Satellite Thermal Dissipation 101 3.26 Orbital Mission Life and Launch Vehicle Considerations 102 3.27 Environment Management (Thermal, Radiation) 102 3.28 Spacecraft Structure (Acoustic/Dynamic) 103 3.29 Satellite Positioning (Station Keeping) 103 3.30 Satellite Positioning (Attitude Control) 104 3.31 Power Subsystem 104 3.32 Tracking, Telemetry, Command and Monitoring 105 References 105 4 Space Environment and Materials 106 J. Santiago-Prowald and L. Salghetti Drioli 4.1 Introduction 106 4.2 The Space Environment of Antennas 106 4.2.1 The Radiation Environment 107 4.2.2 The Plasma Environment 109 4.2.3 The Neutral Environment 110 4.2.4 Space Environment for Typical Spacecraft Orbits 111 4.2.5 Thermal Environment 111 4.2.6 Launch Environment 113 4.3 Selection of Materials in Relation to Their Electromagnetic Properties 117 4.3.1 RF Transparent Materials and Their Use 117 4.3.2 RF Conducting Materials and Their Use 117 4.3.3 Material Selection Golden Rules for PIM Control 118 4.4 Space Materials and Manufacturing Processes 118 4.4.1 Metals and Their Alloys 118 4.4.2 Polymer Matrix Composites 121 4.4.3 Ceramics and Ceramic Matrix Composites 125 4.5 Characterization of Mechanical and Thermal Behaviour 127 4.5.1 Thermal Vacuum Environment and Outgassing Screening 127 4.5.2 Fundamental Characterization Tests of Polymers and Composites 128 4.5.3 Characterization of Mechanical Properties 130 4.5.4 Thermal and Thermoelastic Characterization 131 Acknowledgements 131 References 131 5 Mechanical and Thermal Design of Space Antennas 133 J. Santiago-Prowald and Heiko Ritter 5.1 Introduction: The Mechanical Thermal Electrical Triangle 133 5.1.1 Antenna Product 134 5.1.2 Configuration, Materials and Processes 135 5.1.3 Review of Requirements and Their Verification 136 5.2 Design of Antenna Structures 136 5.2.1 Typical Design Solutions for Reflectors 136 5.2.2 Structural Description of the Sandwich Plate Architecture 143 5.2.3 Thermal Description of the Sandwich Plate Architecture 143 5.2.4 Electrical Description of the Sandwich Plate Architecture in Relation to Thermo-mechanical Design 144 5.3 Structural Modelling and Analysis 144 5.3.1 First-Order Plate Theory 145 5.3.2 Higher Order Plate Theories 148 5.3.3 Classical Laminated Plate Theory 148 5.3.4 Homogeneous Isotropic Plate Versus Symmetric Sandwich Plate 149 5.3.5 Skins Made of Composite Material 150 5.3.6 Honeycomb Core Characteristics 152 5.3.7 Failure Modes of Sandwich Plates 152 5.3.8 Mass Optimization of Sandwich Plate Architecture for Antennas 154 5.3.9 Finite Element Analysis 156 5.3.10 Acoustic Loads on Antennas 159 5.4 Thermal and Thermoelastic Analysis 166 5.4.1 The Thermal Environment of Space Antennas 166 5.4.2 Transverse Thermal Conductance Model of the Sandwich Plate 167 5.4.3 Thermal Balance of the Flat Sandwich Plate 168 5.4.4 Thermal Distortions of a Flat Plate in Space 169 5.4.5 Thermoelastic Stability of an Offset Parabolic Reflector 171 5.4.6 Thermal Analysis Tools 172 5.4.7 Thermal Analysis Cases 173 5.4.8 Thermal Model Uncertainty and Margins 173 5.5 Thermal Control Strategies 173 5.5.1 Requirements and Principal Design Choices 173 5.5.2 Thermal Control Components 174 5.5.3 Thermal Design Examples 176 Acknowledgements 177 References 178 6 Testing of Antennas for Space 179 Jerzy Lemanczyk, Hans Juergen Steiner, and Quiterio Garcia 6.1 Introduction 179 6.2 Testing as a Development and Verification Tool 180 6.2.1 Engineering for Test 180 6.2.2 Model Philosophy and Definitions 182 6.2.3 Electrical Model Correlation 190 6.2.4 Thermal Testing and Model Correlation 195 6.3 Antenna Testing Facilities 203 6.3.1 Far-Field Antenna Test Ranges 203 6.3.2 Compact Antenna Test Ranges 203 6.3.3 Near-Field Measurements and Facilities 212 6.3.4 Environmental Test Facilities and Mechanical Testing 220 6.3.5 PIM Testing 224 6.4 Case Study: SMOS 226 6.4.1 The SMOS MIRAS Instrument 227 6.4.2 SMOS Model Philosophy 231 6.4.3 Antenna Pattern Test Campaign 238 References 248 7 Historical Overview of the Development of Space Antennas 250 Antoine G. Roederer 7.1 Introduction 250 7.2 The Early Days 252 7.2.1 Wire and Slot Antennas on Simple Satellite Bodies 252 7.2.2 Antenna Computer Modelling Takes Off 254 7.2.3 Existing/Classical Antenna Designs Adapted for Space 259 7.3 Larger Reflectors with Complex Feeding Systems 262 7.3.1 Introduction 262 7.3.2 Multi-frequency Antennas 263 7.3.3 Large Unfurlable Antennas 271 7.3.4 Solid Surface Deployable Reflector Antennas 279 7.3.5 Polarization-Sensitive and Shaped Reflectors 282 7.3.6 Multi-feed Antennas 285 7.4 Array Antennas 297 7.4.1 Conformal Arrays on Spin-Stabilized Satellites 297 7.4.2 Arrays for Remote Sensing 298 7.4.3 Arrays for Telecommunications 302 7.5 Conclusions 306 Acknowledgements 307 References 307 8 Deployable Mesh Reflector Antennas for Space Applications: RF Characterizations 314 Paolo Focardi, Paula R. Brown, and Yahya Rahmat-Samii 8.1 Introduction 314 8.2 History of Deployable Mesh Reflectors 315 8.3 Design Considerations Specific to Mesh Reflectors 320 8.4 The SMAP Mission A Representative Case Study 320 8.4.1 Mission Overview 320 8.4.2 Key Antenna Design Drivers and Constraints 322 8.4.3 RF Performance Determination of Reflector Surface Materials 327 8.4.4 RF Modeling of the Antenna Radiation Pattern 329 8.4.5 Feed Assembly Design 338 8.4.6 Performance Verification 340 8.5 Conclusion 341 Acknowledgments 341 References 341 9 Microstrip Array Technologies for Space Applications 344 Antonio Montesano, Luis F. de la Fuente, Fernando Monjas, Vicente Garcia, Luis E. Cuesta, Jennifer Campuzano, Ana Trastoy, Miguel Bustamante, Francisco Casares, Eduardo Alonso, David A lvarez, Silvia Arenas, Jose Luis Serrano, and Margarita Naranjo 9.1 Introduction 344 9.2 Basics of Array Antennas 345 9.2.1 Functional (Driving) Requirements and Array Design Solutions 345 9.2.2 Materials for Passive Arrays Versus Environmental and Design Requirements 347 9.2.3 Array Optimization Methods and Criteria 349 9.3 Passive Arrays 350 9.3.1 Radiating Panels for SAR Antennas 350 9.3.2 Navigation Antennas 354 9.3.3 Passive Antennas for Deep Space 361 9.4 Active Arrays 363 9.4.1 Key Active Elements in Active Antennas: Amplifiers 363 9.4.2 Active Hybrids 366 9.4.3 The Thermal Dissipation Design Solution 367 9.4.4 Active Array Control 369 9.4.5 Active Arrays for Communications and Data Transmission 370 9.5 Summary 383 Acknowledgements 383 References 384 10 Printed Reflectarray Antennas for Space Applications 385 Jose A. Encinar 10.1 Introduction 385 10.2 Principle of Operation and Reflectarray Element Performance 388 10.3 Analysis and Design Techniques 391 10.3.1 Analysis and Design of Reflectarray Elements 391 10.3.2 Design and Analysis of Reflectarray Antennas 393 10.3.3 Broadband Techniques 396 10.4 Reflectarray Antennas for Telecommunication and Broadcasting Satellites 400 10.4.1 Contoured-Beam Reflectarrays 400 10.4.2 Dual-Coverage Transmit Antenna 402 10.4.3 Transmit Receive Antenna for Coverage of South America 405 10.5 Recent and Future Developments for Space Applications 414 10.5.1 Large-Aperture Reflectarrays 414 10.5.2 Inflatable Reflectarrays 415 10.5.3 High-Gain Antennas for Deep Space Communications 416 10.5.4 Multibeam Reflectarrays 418 10.5.5 Dual-Reflector Configurations 420 10.5.6 Reconfigurable and Steerable Beam Reflectarrays 424 10.5.7 Conclusions and Future Developments 428 Acknowledgments 428 References 429 11 Emerging Antenna Technologies for Space Applications 435 Safieddin Safavi-Naeini and Mohammad Fakharzadeh 11.1 Introduction 435 11.2 On-Chip/In-Package Antennas for Emerging Millimeter-Wave Systems 436 11.2.1 Recent Advances in On-Chip Antenna Technology 436 11.2.2 Silicon IC Substrate Limitations for On-Chip Antennas 437 11.2.3 On-Chip Antenna on Integrated Passive Silicon Technology 439 11.3 Integrated Planar Waveguide Technologies 441 11.4 Microwave/mmW MEMS-Based Circuit Technologies for Antenna Applications 445 11.4.1 RF/Microwave MEMS-Based Phase Shifter 447 11.4.2 Reflective-Type Phase Shifters for mmW Beam-Forming Applications 447 11.5 Emerging THz Antenna Systems and Integrated Structures 448 11.5.1 THz Photonics Techniques: THz Generation Using Photo-mixing Antennas 451 11.5.2 THz Generation Using a Photo-mixing Antenna Array 453 11.6 Case Study: Low-Cost/Complexity Antenna Technologies for Land-Mobile Satellite Communications 454 11.6.1 System-Level Requirements 454 11.6.2 Reconfigurable Very Low-Profile Antenna Array Technologies 454 11.6.3 Beam Steering Techniques 455 11.6.4 Robust Zero-Knowledge Beam Control Algorithm 457 11.6.5 A Ku-band Low-Profile, Low-Cost Array System for Vehicular Communication 458 11.7 Conclusions 462 References 462 12 Antennas for Satellite Communications 466 Eric Amyotte and Luis Martins Camelo 12.1 Introduction and Design Requirements 466 12.1.1 Link Budget Considerations 467 12.1.2 Types of Satellite Communications Antennas 469 12.1.3 Materials 469 12.1.4 The Space Environment and Its Design Implications 470 12.1.5 Designing for Commercial Applications 470 12.2 UHF Satellite Communications Antennas 471 12.2.1 Typical Requirements and Solutions 471 12.2.2 Single-Element Design 472 12.2.3 Array Design 473 12.2.4 Multipactor Threshold 473 12.3 L/S-band Mobile Satellite Communications Antennas 474 12.3.1 Introduction 474 12.3.2 The Need for Large Unfurlable Reflectors 474 12.3.3 Beam Forming 475 12.3.4 Hybrid Matrix Power Amplification 476 12.3.5 Feed Array Element Design 478 12.3.6 Diplexers 478 12.3.7 Range Measurements 479 12.4 C-, Ku- and Ka-band FSS/BSS Antennas 479 12.4.1 Typical Requirements and Solutions 479 12.4.2 The Shaped-Reflector Technology 480 12.4.3 Power Handling 481 12.4.4 Antenna Structures and Reflectors 481 12.4.5 Reflector Antenna Geometries 482 12.4.6 Feed Chains 491 12.5 Multibeam Broadband Satellite Communications Antennas 496 12.5.1 Typical Requirements and Solutions 496 12.5.2 SFB Array-Fed Reflector Antennas 497 12.5.3 FAFR Antennas 500 12.5.4 DRA Antennas 503 12.5.5 RF Sensing and Tracking 503 12.6 Antennas for Non-geostationary Constellations 504 12.6.1 Typical Requirements and Solutions 504 12.6.2 Global Beam Ground Links 505 12.6.3 High-Gain Ground Links 505 12.6.4 Intersatellite Links or Cross-links 506 12.6.5 Feeder Links 507 Acknowledgments 508 References 508 13 SAR Antennas 511 Pasquale Capece and Andrea Torre 13.1 Introduction to Spaceborne SAR Systems 511 13.1.1 General Presentation of SAR Systems 511 13.1.2 Azimuth Resolution in Conventional Radar and in SAR 512 13.1.3 Antenna Requirements Versus Performance Parameters 514 13.2 Challenges of Antenna Design for SAR 518 13.2.1 Reflector Antennas 518 13.2.2 Active Antennas and Subsystems 519 13.3 A Review of the Development of Antennas for Spaceborne SAR 534 13.3.1 TecSAR 534 13.3.2 SAR- Lupe 535 13.3.3 ASAR (EnviSat) 535 13.3.4 Radarsat 1 535 13.3.5 Radarsat 2 535 13.3.6 Palsar (ALOS) 535 13.3.7 TerraSAR-X 536 13.3.8 COSMO (SkyMed) 536 13.4 Case Studies of Antennas for Spaceborne SAR 539 13.4.1 Instrument Design 539 13.4.2 SAR Antenna 540 13.5 Ongoing Developments in SAR Antennas 544 13.5.1 Sentinel 1 544 13.5.2 Saocom Mission 544 13.5.3 ALOS 2 545 13.5.4 COSMO Second Generation 545 13.6 Acknowledgments 546 References 546 14 Antennas for Global Navigation Satellite System Receivers 548 Chi-Chih Chen, Steven (Shichang) Gao, and Moazam Maqsood 14.1 Introduction 548 14.2 RF Requirements of GNSS Receiving Antenna 551 14.2.1 General RF Requirements 551 14.2.2 Advanced Requirements for Enhanced Position Accuracy and Multipath Signal Suppression 556 14.3 Design Challenges and Solutions for GNSS Antennas 561 14.3.1 Wide Frequency Coverage 562 14.3.2 Antenna Delay Variation with Frequency and Angle 562 14.3.3 Antenna Size Reduction 567 14.3.4 Antenna Platform Scattering Effect 568 14.4 Common and Novel GNSS Antennas 572 14.4.1 Single-Element Antenna 572 14.4.2 Multi-element Antenna Array 580 14.5 Spaceborne GNSS Antennas 582 14.5.1 Requirements for Antennas On Board Spaceborne GNSS Receivers 582 14.5.2 A Review of Antennas Developed for Spaceborne GNSS Receivers 584 14.6 Case Study: Dual-Band Microstrip Patch Antenna for Spacecraft Precise Orbit Determination Applications 586 14.6.1 Antenna Development 586 14.6.2 Results and Discussions 588 14.7 Summary 591 References 592 15 Antennas for Small Satellites 596 Steven (Shichang) Gao, Keith Clark, Jan Zackrisson, Kevin Maynard, Luigi Boccia, and Jiadong Xu 15.1 Introduction to Small Satellites 596 15.1.1 Small Satellites and Their Classification 596 15.1.2 Microsatellites and Constellations of Small Satellites 597 15.1.3 Cube Satellites 598 15.1.4 Formation Flying of Multiple Small Satellites 599 15.2 The Challenges of Designing Antennas for Small Satellites 600 15.2.1 Choice of Operating Frequencies 600 15.2.2 Small Ground Planes Compared with the Operational Wavelength 601 15.2.3 Coupling between Antennas and Structural Elements 601 15.2.4 Antenna Pattern 602 15.2.5 Orbital Height 602 15.2.6 Development Cost 602 15.2.7 Production Costs 602 15.2.8 Testing Costs 602 15.2.9 Deployment Systems 603 15.2.10 Volume 603 15.2.11 Mass 603 15.2.12 Shock and Vibration Loads 603 15.2.13 Material Degradation 603 15.2.14 Atomic Oxygen 603 15.2.15 Material Outgassing 604 15.2.16 Creep 604 15.2.17 Material Charging 604 15.2.18 The Interaction between Satellite Antennas and Structure 604 15.3 Review of Antenna Development for Small Satellites 606 15.3.1 Antennas for Telemetry, Tracking and Command (TT&C) 606 15.3.2 Antennas for High-Rate Data Downlink 609 15.3.3 Antennas for Global Navigation Satellite System (GNSS) Receivers and Reflectometry 615 15.3.4 Antennas for Intersatellite Links 618 15.3.5 Other Antennas 619 15.4 Case Studies 621 15.4.1 Case Study 1: Antenna Pointing Mechanism and Horn Antenna 621 15.4.2 Case Study 2: X-band Downlink Helix Antenna 623 15.5 Conclusions 627 References 628 16 Space Antennas for Radio Astronomy 629 Paul F. Goldsmith 16.1 Introduction 629 16.2 Overview of Radio Astronomy and the Role of Space Antennas 629 16.3 Space Antennas for Cosmic Microwave Background Studies 631 16.3.1 The Microwave Background 631 16.3.2 Soviet Space Observations of the CMB 632 16.3.3 The Cosmic Background Explorer (COBE) Satellite 633 16.3.4 The Wilkinson Microwave Anisotropy Probe (WMAP) 635 16.3.5 The Planck Mission 637 16.4 Space Radio Observatories for Submillimeter/Far-Infrared Astronomy 641 16.4.1 Overview of Submillimeter/Far-Infrared Astronomy 641 16.4.2 The Submillimeter Wave Astronomy Satellite 643 16.4.3 The Odin Orbital Observatory 646 16.4.4 The Herschel Space Observatory 648 16.4.5 The Future: Millimetron, CALISTO, and Beyond 650 16.5 Low-Frequency Radio Astronomy 652 16.5.1 Overview of Low-Frequency Radio Astronomy 652 16.5.2 Early Low-Frequency Radio Space Missions 653 16.5.3 The Future 655 16.6 Space VLBI 655 16.6.1 Overview of Space VLBI 655 16.6.2 HALCA 656 16.6.3 RadioAstron 658 16.7 Summary 658 Acknowledgments 660 References 660 17 Antennas for Deep Space Applications 664 Paula R. Brown, Richard E. Hodges, and Jacqueline C. Chen 17.1 Introduction 664 17.2 Telecommunications Antennas 665 17.3 Case Study I Mars Science Laboratory 666 17.3.1 MSL Mission Description 666 17.3.2 MSL X-band Antennas 668 17.3.3 MSL UHF Antennas 676 17.3.4 MSL Terminal Descent Sensor (Landing Radar) 680 17.4 Case Study II Juno 681 17.4.1 Juno Mission Description 681 17.4.2 Telecom Antennas 682 17.4.3 Juno Microwave Radiometer Antennas 684 Acknowledgments 692 References 693 18 Space Antenna Challenges for Future Missions, Key Techniques and Technologies 695 Cyril Mangenot and William A. Imbriale 18.1 Overview of Chapter Contents 695 18.2 General Introduction 696 18.3 General Evolution of Space Antenna Needs and Requirements 697 18.4 Develop Large-Aperture Antennas 699 18.4.1 Problem Area and Challenges 699 18.4.2 Present and Expected Future Space Missions 700 18.4.3 Promising Antenna Concepts and Technologies 702 18.5 Increase Telecommunication Satellite Throughput 707 18.5.1 Problem Area and Challenges 707 18.5.2 Present and Expected Future Space Missions 707 18.5.3 Promising Antenna Concepts and Technologies 708 18.6 Enable Sharing the Same Aperture for Multiband and Multipurpose Antennas 709 18.6.1 Problem Area and Challenges 709 18.6.2 Present and Expected Future Space Missions 710 18.6.3 Promising Antenna Concepts and Technologies 710 18.7 Increase the Competitiveness of Well-Established Antenna Products 710 18.7.1 Problem Area and Challenges 710 18.7.2 Present and Expected Future Space Missions 711 18.7.3 Promising Antenna Concepts and Technologies 712 18.8 Enable Single-Beam In-Flight Coverage/Polarization Reconfiguration 713 18.8.1 Problem Area and Challenges 713 18.8.2 Present and Expected Future Space Missions 714 18.8.3 Promising Antenna Concepts and Technologies 714 18.9 Enable Active Antennas at Affordable Cost 715 18.9.1 Problem Area and Challenges 715 18.9.2 Present and Expected Future Space Missions 717 18.9.3 Promising Antenna Concepts and Technologies 718 18.10 Develop Innovative Antennas for Future Earth Observation and Science Instruments 724 18.10.1 Problem Area and Challenges 724 18.10.2 Present and Expected Future Space Missions 725 18.10.3 Promising Antenna Concepts and Technologies 729 18.11 Evolve Towards Mass Production of Satellite and User Terminal Antennas 732 18.11.1 Problem Area and Challenges 732 18.11.2 Present and Expected Future Space Missions 732 18.11.3 Promising Antenna Concepts and Technologies 732 18.12 Technology Push for Enabling New Missions 734 18.12.1 Problem Area and Challenges 734 18.12.2 Promising Antenna Concepts and Technologies 734 18.13 Develop New Approaches for Satellite/Antenna Modelling and Testing 735 18.13.1 Problem Area and Challenges 735 18.13.2 Promising Antenna Concepts and Technologies 736 18.14 Conclusions 737 Acronyms 738 Acknowledgements 740 References 740 Index 741
Responsibility: editors, William A. Imbriale, Steven (Shichang) Gao, Luigi Boccia.
More information:

Reviews

User-contributed reviews
Retrieving GoodReads reviews...
Retrieving DOGObooks reviews...

Tags

Be the first.
Confirm this request

You may have already requested this item. Please select Ok if you would like to proceed with this request anyway.

Linked Data


Primary Entity

<http://www.worldcat.org/oclc/768606924> # Space antenna handbook
    a schema:CreativeWork, schema:Book ;
   library:oclcnum "768606924" ;
   library:placeOfPublication <http://experiment.worldcat.org/entity/work/data/1063998589#Place/chichester_west_sussex> ; # Chichester, West Sussex
   library:placeOfPublication <http://id.loc.gov/vocabulary/countries/enk> ;
   schema:about <http://id.worldcat.org/fast/1128080> ; # Space vehicles--Radio antennas
   schema:about <http://id.loc.gov/authorities/subjects/sh85126002> ; # Space vehicles--Radio antennas
   schema:about <http://id.worldcat.org/fast/817444> ; # Artificial satellites in telecommunication
   schema:about <http://dewey.info/class/629.4743/e23/> ;
   schema:about <http://id.worldcat.org/fast/810043> ; # Antennas (Electronics)
   schema:bookFormat bgn:PrintBook ;
   schema:contributor <http://experiment.worldcat.org/entity/work/data/1063998589#Person/gao_steven> ; # Steven Gao
   schema:contributor <http://viaf.org/viaf/32302740> ; # William A. Imbriale
   schema:contributor <http://experiment.worldcat.org/entity/work/data/1063998589#Person/boccia_luigi> ; # Luigi Boccia
   schema:datePublished "2012" ;
   schema:exampleOfWork <http://worldcat.org/entity/work/id/1063998589> ;
   schema:inLanguage "en" ;
   schema:name "Space antenna handbook"@en ;
   schema:productID "768606924" ;
   schema:publication <http://www.worldcat.org/title/-/oclc/768606924#PublicationEvent/chichester_west_sussex_wiley_2012> ;
   schema:publisher <http://experiment.worldcat.org/entity/work/data/1063998589#Agent/wiley> ; # Wiley
   schema:workExample <http://worldcat.org/isbn/9781119993193> ;
   umbel:isLike <http://bnb.data.bl.uk/id/resource/GBB212400> ;
   wdrs:describedby <http://www.worldcat.org/title/-/oclc/768606924> ;
    .


Related Entities

<http://experiment.worldcat.org/entity/work/data/1063998589#Person/boccia_luigi> # Luigi Boccia
    a schema:Person ;
   schema:familyName "Boccia" ;
   schema:givenName "Luigi" ;
   schema:name "Luigi Boccia" ;
    .

<http://experiment.worldcat.org/entity/work/data/1063998589#Place/chichester_west_sussex> # Chichester, West Sussex
    a schema:Place ;
   schema:name "Chichester, West Sussex" ;
    .

<http://id.loc.gov/authorities/subjects/sh85126002> # Space vehicles--Radio antennas
    a schema:Intangible ;
   schema:name "Space vehicles--Radio antennas"@en ;
    .

<http://id.worldcat.org/fast/1128080> # Space vehicles--Radio antennas
    a schema:Intangible ;
   schema:name "Space vehicles--Radio antennas"@en ;
    .

<http://id.worldcat.org/fast/810043> # Antennas (Electronics)
    a schema:Intangible ;
   schema:name "Antennas (Electronics)"@en ;
    .

<http://id.worldcat.org/fast/817444> # Artificial satellites in telecommunication
    a schema:Intangible ;
   schema:name "Artificial satellites in telecommunication"@en ;
    .

<http://viaf.org/viaf/32302740> # William A. Imbriale
    a schema:Person ;
   schema:familyName "Imbriale" ;
   schema:givenName "William A." ;
   schema:givenName "W. A." ;
   schema:name "William A. Imbriale" ;
    .

<http://worldcat.org/isbn/9781119993193>
    a schema:ProductModel ;
   schema:isbn "1119993199" ;
   schema:isbn "9781119993193" ;
    .


Content-negotiable representations

Close Window

Please sign in to WorldCat 

Don't have an account? You can easily create a free account.